Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 266: 51-59, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29957290

RESUMEN

Membrane fouling mitigation was observed during the development of novel sponge membrane bioreactor coupled with fiber bundle anoxic bio-filter (AF-MBMBR). Soluble microbial product (SMP) was found to be positively correlated with membrane fouling. To further clarify the mechanism of fouling mitigation, the effects of bio-carriers (sponge and fiber bundles) on characteristics and fouling potential of SMP were investigated. Characterization of SMP implied that as a consequence of employing bio-carriers, tyrosine and tryptophan in SMP significantly decreased, instead relative proportions of humic and fulvic acids increased. Meanwhile, batch filtration tests demonstrated that fouling potential of SMP was significantly alleviated, flux decline caused by filtrating SMP decreased from 84.5% to 60.1%. Further analysis on foulants and filtrate revealed that proteins performed high adhesion propensity on membrane while humic and fulvic acids mainly can pass through the membrane; this finding could well explain the mitigation of SMP fouling potential induced by bio-carriers.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Carbohidratos , Filtración , Membranas Artificiales
2.
Bioresour Technol ; 243: 1051-1058, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28764107

RESUMEN

Membrane fouling mitigation in a novel AF-MBMBR system (moving bed membrane bioreactor (10L) coupled with anoxic biofilter (4L)) under high salinity condition (35‰) was systematically investigated. Pre-positioned AF served as a pretreatment induced significant decrease of suspended biomass by 85% and dissolved organic matters by 51.7% in subsequent MBR, which resulted in a reduction of cake layer formation. Based on this, sponge bio-carriers in MBMBR further alleviated the fouling propensity by modifying extracellular polymeric substances (EPS) properties. The protein component in EPS decreased from 181.4 to 116.5mg/g MLSS, with a decline of protein/carbohydrate ratio from 4.6 to 3.4. In particular, elimination of hydrophobic groups like aromatic protein-like substance in EPS was detected. These caused the less biomass deposition on membrane surface, thereby alleviating membrane fouling. In summary, mitigation of membrane fouling in AF-MBMBR should be attributed to contributions from both pre-positioned AF and sponge bio-carriers.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Biomasa , Membranas Artificiales , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA