Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Chem Soc ; 138(33): 10452-66, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27485779

RESUMEN

Reactive oxygen species (ROS) and oxidative stress are implicated in various physiological and pathological processes, and this feature provides a vital biochemical basis for designing novel therapeutic and diagnostic nanomedicines. Among them, oxidation-responsive micelles and vesicles (polymersomes) of amphiphilic block copolymers have been extensively explored; however, in previous works, oxidation by ROS including H2O2 exclusively leads to microstructural destruction of polymeric assemblies. For oxidation-responsive polymersomes, fast release of encapsulated hydrophilic drugs and bioactive macromolecules will occur upon microstructural disintegration. Under certain application circumstances, this does not meet design requirements for sustained-release drug nanocarriers and long-acting in vivo nanoreactors. Also note that conventional polymersomes possess thick hydrophobic bilayers and compromised membrane permeability, rendering them as ineffective nanocarriers and nanoreactors. We herein report the fabrication of oxidation-responsive multifunctional polymersomes exhibiting intracellular milieu-triggered vesicle bilayer cross-linking, permeability switching, and enhanced imaging/drug release features. Mitochondria-targeted H2O2 reactive polymersomes were obtained through the self-assembly of amphiphilic block copolymers containing arylboronate ester-capped self-immolative side linkages in the hydrophobic block, followed by surface functionalization with targeting peptides. Upon cellular uptake, intracellular H2O2 triggers cascade decaging reactions and generates primary amine moieties; prominent amidation reaction then occurs within hydrophobic bilayer membranes, resulting in concurrent cross-linking and hydrophobic-to-hydrophilic transition of polymersome bilayers inside live cells. This process was further utilized to achieve integrated functions such as sustained drug release, (combination) chemotherapy monitored by fluorescence and magnetic resonance (MR) imaging turn-on, and to construct intracellular fluorogenic nanoreactors for cytosolic thiol-containing bioactive molecules.


Asunto(s)
Portadores de Fármacos/química , Espacio Intracelular/metabolismo , Nanotecnología , Polímeros/química , Liberación de Fármacos , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Oxidación-Reducción , Permeabilidad , Compuestos de Sulfhidrilo/química
2.
Langmuir ; 28(4): 2073-82, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22047551

RESUMEN

We report on the fabrication of organic/inorganic hybrid micelles of amphiphilic block copolymers physically encapsulated with hydrophobic drugs within micellar cores and stably embedded with superparamagnetic iron oxide (SPIO) nanoparticles within hydrophilic coronas, which possess integrated functions of chemotherapeutic drug delivery and magnetic resonance (MR) imaging contrast enhancement. Poly(ε-caprolactone)-b-poly(glycerol monomethacrylate), PCL-b-PGMA, and PCL-b-P(OEGMA-co-FA) amphiphilic block copolymers were synthesized at first by combining ring-opening polymerization (ROP), atom transfer radical polymerization (ATRP), and post- modification techniques, where OEGMA and FA are oligo(ethylene glycol) monomethyl ether methacrylate and folic acid-bearing moieties, respectively. A model hydrophobic anticancer drug, paclitaxel (PTX), and 4 nm SPIO nanoparticles were then loaded into micellar cores and hydrophilic coronas, respectively, of mixed micelles fabricated from PCL-b-PGMA and PCL-b-P(OEGMA-co-FA) diblock copolymers by taking advantage of the hydrophobicity of micellar cores and strong affinity between 1,2-diol moieties in PGMA and Fe atoms at the surface of SPIO nanoparticles. The controlled and sustained release of PTX from hybrid micelles was achieved, exhibiting a cumulative release of ~61% encapsulated drugs (loading content, 8.5 w/w%) over ~130 h. Compared to that of surfactant-stabilized single SPIO nanoparticles (r(2) = 28.3 s(-1) mM(-1) Fe), the clustering of SPIO nanoparticles within micellar coronas led to considerably enhanced T(2) relaxivity (r(2) = 121.1 s(-1) mM(-1) Fe), suggesting that hybrid micelles can serve as a T(2)-weighted MR imaging contrast enhancer with improved performance. Moreover, preliminary experiments of in vivo MR imaging were also conducted. These results indicate that amphiphilic block copolymer micelles surface embedded with SPIO nanoparticles at the hydrophilic corona can act as a new generation of nanoplatform integrating targeted drug delivery, controlled release, and disease diagnostic functions.


Asunto(s)
Antineoplásicos/química , Compuestos Férricos/química , Interacciones Hidrofóbicas e Hidrofílicas , Imagen por Resonancia Magnética/métodos , Imanes/química , Micelas , Polímeros/química , Antineoplásicos/metabolismo , Medios de Contraste/química , Portadores de Fármacos/química , Modelos Moleculares , Conformación Molecular , Paclitaxel/química , Paclitaxel/metabolismo , Polimerizacion , Propiedades de Superficie
3.
Biomacromolecules ; 13(11): 3877-86, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23013152

RESUMEN

Polymeric drug nanocarriers integrated with diagnostic and sensing functions are capable of in situ monitoring the biodistribution of chemotherapeutic drugs and imaging/contrasting agents, which enables the establishment of image-guided personalized cancer therapeutic protocols. Responsive multifunctional theranostic nanocarriers possessing external stimuli-tunable drug release rates and imaging signal intensities represent another promising direction in this field. In this work, we fabricated responsive amphiphilic diblock copolymer micelles exhibiting light-triggered hydrophobic-hydrophilic transition within micellar cores and the concomitant enhancement of magnetic resonance (MR) imaging contrast performance and release rate of physically encapsulated hydrophobic drugs. POEGMA-b-P(NIPAM-co-NBA-co-Gd) diblock copolymer covalently labeled with Gd(3+) complex (Gd) in the light-responsive block was synthesized at first, where OEGMA, NIPAM, and NBA are oligo(ethylene glycol) monomethyl ether methacrylate, N-isopropylacrylamide, and o-nitrobenzyl acrylate, respectively. The amphiphilic diblock copolymer spontaneously self-assembles in aqueous solution into micellar nanoparticles possessing hydrophobic P(NIPAM-co-NBA-co-Gd) cores and hydrophilic POEGMA coronas, which can physically encapsulate doxorubicin (Dox) as a model chemotherapeutic drug. Upon UV irradiation, hydrophobic NBA moieties within micellar cores transform into hydrophilic carboxyl derivatives, triggering micelle microstructural changes and core swelling. During this process, the microenvironment surrounding Gd(3+) complexes was subjected to a transition from being hydrophobic to hydrophilic, leading to the enhancement of MR imaging contrast performance, that is, ~1.9-fold increase in longitudinal relaxivity (r(1)). In addition, the release rate of encapsulated Dox was also enhanced (~65% of Dox release in 12 h upon UV irradiation versus ~47% Dox release in 25 h for the control). The reported strategy of light-triggered coenhancement of MR imaging contrast performance and drug release profiles represents a general route to the construction of next generation smart polymeric theranostic nanocarriers.


Asunto(s)
Doxorrubicina/metabolismo , Portadores de Fármacos/metabolismo , Micelas , Polímeros/metabolismo , Tensoactivos/metabolismo , Acrilamidas/síntesis química , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Línea Celular , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Doxorrubicina/administración & dosificación , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Imagen por Resonancia Magnética , Metacrilatos/síntesis química , Nanopartículas/química , Nitrobenzoatos/síntesis química , Polietilenglicoles/síntesis química , Polímeros/química , Tensoactivos/química , Distribución Tisular
4.
ACS Appl Bio Mater ; 4(3): 2798-2809, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014319

RESUMEN

A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 µmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.


Asunto(s)
Materiales Biocompatibles/química , Gadolinio/química , Grafito/química , Imagen por Resonancia Magnética , Puntos Cuánticos/química , Animales , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Ensayo de Materiales , Ratones , Tamaño de la Partícula
5.
Adv Mater ; 26(39): 6734-41, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25147084

RESUMEN

Four-arm star-shaped copolymers, TPE-star-P(DMA-co-BMA-co-Gd), containing TPE cores with an aggregation-induced emission (AIE) feature, a T 1 -type magnetic resonance (MR) contrast agent, and amphiphilic cationic arms, are synthesized. By taking advantage of non-covalent interactions between star copolymers and bacteria surfaces, bimodal fluorometric/MR detection and concomitant inhibition of both Gram-positive and Gram-negative bacteria strains in aqueous media are explored.


Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Magnéticos , Polímeros/química , Polímeros/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Escherichia coli/citología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Compuestos Heterocíclicos con 1 Anillo/química
6.
Biomaterials ; 32(27): 6595-605, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21663960

RESUMEN

We report on the fabrication of multifunctional polymeric unimolecular micelles as an integrated platform for cancer targeted drug delivery and magnetic resonance imaging (MRI) contrast enhancement under in vitro and in vivo conditions. Starting from a fractionated fourth-generation hyperbranched polyester (Boltorn H40), the ring-opening polymerization of ɛ-caprolactone (CL) from the periphery of H40 and subsequent terminal group esterification with 2-bromoisobutyryl bromide afforded star copolymer-based atom transfer radical polymerization (ATRP) macroinitiator, H40-PCL-Br. Well-defined multiarm star block copolymers, H40-PCL-b-P(OEGMA-co-AzPMA), were then synthesized by the ATRP of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA) and 3-azidopropyl methacrylate (AzPMA). This was followed by the click reaction of H40-PCL-b-P(OEGMA-co-AzPMA) with alkynyl-functionalized cancer cell-targeting moieties, alkynyl-folate, and T(1)-type MRI contrast agents, alkynyl-DOTA-Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid), affording H40-PCL-b-P(OEGMA-Gd-FA). In aqueous solution, the amphiphilic multiarm star block copolymer exists as structurally stable unimolecular micelles possessing a hyperbranched polyester core, a hydrophobic PCL inner layer, and a hydrophilic P(OEGMA-Gd-FA) outer corona. H40-PCL-b-P(OEGMA-Gd-FA) unimolecular micelles are capable of encapsulating paclitaxel, a well-known hydrophobic anticancer drug, with a loading content of 6.67 w/w% and exhibiting controlled release of up to 80% loaded drug over a time period of ∼120 h. In vitro MRI experiments demonstrated considerably enhanced T(1) relaxivity (18.14 s(-1) mM(-1)) for unimolecular micelles compared to 3.12 s(-1) mM(-1) for that of the small molecule counterpart, alkynyl-DOTA-Gd. Further experiments of in vivo MR imaging in rats revealed good accumulation of unimolecular micelles within rat liver and kidney, prominent positive contrast enhancement, and relatively long duration of blood circulation. The reported unimolecular micelles-based structurally stable nanocarriers synergistically integrated with cancer targeted drug delivery and controlled release and MR imaging functions augur well for their potential applications as theranostic systems.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética , Micelas , Neoplasias/tratamiento farmacológico , Polímeros/síntesis química , Tensoactivos/química , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácido Fólico/química , Gadolinio/química , Células HeLa , Humanos , Hidrodinámica , Espectroscopía de Resonancia Magnética , Masculino , Metacrilatos/síntesis química , Metacrilatos/química , Microscopía de Fuerza Atómica , Neoplasias/patología , Especificidad de Órganos/efectos de los fármacos , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polímeros/química , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA