Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37816143

RESUMEN

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Asunto(s)
Arabidopsis , Musa , Celulosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
J Exp Bot ; 73(11): 3477-3495, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188965

RESUMEN

The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/metabolismo
3.
J Exp Bot ; 71(18): 5469-5483, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32474603

RESUMEN

The function of the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is still unclear since it appears to be either a negative or a positive regulator for secondary cell wall deposition with its loss-of-function mutant displaying thicker interfascicular and xylary fiber cell walls but thinner vessel cell walls in inflorescence stems. To explore the exact function of KNAT7, class II KNOTTED1-LIKE HOMEOBOX (KNOX II) genes in Arabidopsis including KNAT3, KNAT4, and KNAT5 were studied together. By chimeric repressor technology, we found that both KNAT3 and KNAT7 repressors exhibited a similar dwarf phenotype. Both KNAT3 and KNAT7 genes were expressed in the inflorescence stems and the knat3 knat7 double mutant exhibited a dwarf phenotype similar to the repressor lines. A stem cross-section of knat3 knat7 displayed an enhanced irregular xylem phenotype as compared with the single mutants, and its cell wall thickness in xylem vessels and interfascicular fibers was significantly reduced. Analysis of cell wall chemical composition revealed that syringyl lignin was significantly decreased while guaiacyl lignin was increased in the knat3 knat7 double mutant. Coincidently, the knat3 knat7 transcriptome showed that most lignin pathway genes were activated, whereas the syringyl lignin-related gene Ferulate 5-Hydroxylase (F5H) was down-regulated. Protein interaction analysis revealed that KNAT3 and KNAT7 can form a heterodimer, and KNAT3, but not KNAT7, can interact with the key secondary cell wall formation transcription factors NST1/2, which suggests that the KNAT3-NST1/2 heterodimer complex regulates F5H to promote syringyl lignin synthesis. These results indicate that KNAT3 and KNAT7 synergistically work together to promote secondary cell wall biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lignina , Proteínas Nucleares , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
4.
Carbohydr Polym ; 297: 119904, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184125

RESUMEN

The regulation of the magnitude of the depletion effect is necessary for accurately predicting and explaining the emulsion stabilization mechanism. Herein, the bacterial cellulose/carboxymethyl chitosan (BC/CCS) complexes with tunable assembled behaviors were prepared and designed via electrostatic interaction. Specially, the emulsions stabilized by BC/CCS complexes exhibited excellent stability as compared with that stabilized by BC polymers alone. At pH 9.6, BC/CCS complexes in the continuous phase induced long-range depletion-stabilization effect to stabilize emulsions. Additionally, the magnitude of depletion effect of BC/CCS complexes could be improved by increasing BC concentration, and effectively stabilized emulsions. Furthermore, with the decrease to pH 7.0, the interfacial adsorption layers at the oil-water interface prevented oil droplets from agglomerating, but did not show better emulsion stability. These results clarified that the magnitude of the depletion effect could be controlled by altering BC-based complexes particles, which would be useful for the applications of emulsions in numerous fields.


Asunto(s)
Quitosano , Adsorción , Bacterias , Celulosa/química , Quitosano/química , Emulsiones/química , Agua/química
5.
Carbohydr Polym ; 256: 117595, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483080

RESUMEN

Most structural self-healing materials were developed based on either reversible supramolecular interaction or dynamic covalent bonding. It seems a good idea to incorporate self-healing properties into high-performance materials. In this study, we fabricated the alginate-based cyclodextrin and polyacrylamide azobenzene highly stretchable and tough interpenetrating composite hydrogel with self-repairing behavior under light irradiation. Initially, the alginate-based cyclodextrin and polyacrylamide azobenzene were designed and synthesized. The corresponding structural, thermal, and morphological properties of hydrogels were characterized. The reversible transformation of the sol-gel can be achieved by the irradiation upon ultraviolet light and visible light. The self-healing behavior of this composited gel is based on the host-guest interaction between cyclodextrin and azobenzene. The recovery gel elongation at 48 h healing in the dark condition was is 0.04 MPa, with an elongation of 1140 %. Therefore, this gel can achieve self-healing ability while maintaining highly stretchable and tough performance.


Asunto(s)
Acrilamidas/química , Resinas Acrílicas/química , Compuestos Azo/química , Ciclodextrinas/química , Hidrogeles/química , Alginatos/química , Luz , Ensayo de Materiales , Estructura Molecular , Peso Molecular , Transición de Fase , Polímeros/química , Presión , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Rayos Ultravioleta , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA