Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 238: 124106, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36948329

RESUMEN

The complicated wound repair process caused by microbial infection is still a clinical problem due to antibiotic resistance. Therefore it is necessary to employ the incorporating bioactive molecules in the dressing to solve this problem. Herein, a multifunctional nanocomposite hydrogel (CS-HCA-Icps) with the pathological pH-responsive drug release has been developed to promote the infection-impaired wound healing. CS-HCA-Icps nanocomposite hydrogel composed of catechol-grafted chitosan (CS-HCA) and a curcumin-Fe3+ coordination nanoparticles (Icps, Cur-Fe3+) exhibits the favorable activities in free radical scavenging, anti-bacterial and anti-inflammatory. The favorable biocompatibility is also demonstrated both in vitro and in vivo experiments. These demonstrate the promoting efficacy of hydrogel in wound healing. In this study, Chitosan (CS) shows excellent biocompatibility and antibacterial properties for tissue repair. After functional modification with HCA, the catechol groups are beneficial to improve antioxidant capacity for wound repair, Moreover, Icps nanomedicine are able to enhance the loaded Cur release in response to the pathological acidic microenvironment at the inflammatory stage of wounds. Thus, the pathological pH-responsive hydrogel integrating anti-bacterial, antioxidant, and anti-inflammatory functions may represent a promising strategy for safe and efficient wound healing, in particular for potential clinical use.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/farmacología , Antioxidantes/farmacología , Nanogeles , Nanomedicina , Cicatrización de Heridas , Catecoles/farmacología , Antiinflamatorios , Concentración de Iones de Hidrógeno , Antibacterianos/farmacología
2.
Nanomedicine (Lond) ; 18(29): 2143-2157, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38127626

RESUMEN

Aim: This study focused on treating periodontitis with bacterial infection and local over accumulation of reactive oxygen species. Materials & methods: Polydopamine nanoparticles (PDA NPs) were exploited as efficient carriers for encapsulated metronidazole (MNZ). The therapeutic efficacy and biocompatibility of PDA@MNZ NPs were investigated through both in vitro and in vivo studies. Results: The nanodrug PDA@MNZ NPs were successfully fabricated, with well-defined physicochemical characteristics. In vitro, the PDA@MNZ NPs effectively eliminated intracellular reactive oxygen species and inhibited the growth of Porphyromonas gingivalis. Moreover, the PDA@MNZ NPs exhibited synergistic therapy for periodontitisin in vivo. Conclusion: PDA@MNZ NPs were confirmed with exceptional antimicrobial and antioxidant functions, offering a promising avenue for synergistic therapy in periodontitis.


Asunto(s)
Indoles , Nanopartículas , Periodontitis , Polímeros , Humanos , Metronidazol/farmacología , Antioxidantes/farmacología , Nanomedicina , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Periodontitis/tratamiento farmacológico
3.
ACS Appl Mater Interfaces ; 13(29): 33862-33873, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34256560

RESUMEN

For atherosclerosis (AS) management, a therapeutic drug intervention is the most widely used strategy. However, there are some problems such as low location specificity, high intake, and side effects. Nanomedicine can prolong the half-life of drug solubilization, reduce toxic and side effects, and improve the distribution of drug objects. Herein, to overcome the challenges, an erythrocyte-based "plug and play" nanoplatform was developed by incorporating the vascular cell adhesion molecule-1 (VCAM-1) targeting and the acid stimulus responsibility. After the function moieties conjugated with DSPE-PEG, the targeting peptide and the acid-sensitive prodrug were conveniently integrated into red blood cells' surface for enhancing target AS drug delivery and controlling local drug release. As a proof of principle, a plug and play nanoplatform with targeted drug delivery and acid-control drug release is demonstrated, achieving a marked therapeutic effect for AS.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Docetaxel/uso terapéutico , Portadores de Fármacos/química , Membrana Eritrocítica/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/patología , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Ingeniería Celular/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Docetaxel/química , Liberación de Fármacos , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/química , Conejos , Ratas , Pez Cebra
4.
Theranostics ; 11(1): 164-180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391468

RESUMEN

Atherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Methods: Based on macrophage "homing" into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs). Subsequently, the physical properties of the MM/RAPNPs were characterized. The biocompatibility and biological functions of MM/RAPNPs were determined in vitro. Finally, in AS mouse models, the targeting characteristics, therapeutic efficacy and safety of the MM/RAPNPs were examined. Results: The advanced MM/RAPNPs demonstrated good biocompatibility. Due to the MM coating, the nanoparticles effectively inhibited the phagocytosis by macrophages and targeted activated endothelial cells in vitro. In addition, MM-coated nanoparticles effectively targeted and accumulated in atherosclerotic lesions in vivo. After a 4-week treatment program, MM/RAPNPs were shown to significantly delay the progression of AS. Furthermore, MM/RAPNPs displayed favorable safety performance after long-term administration. Conclusion: These results demonstrate that MM/RAPNPs could efficiently and safely inhibit the progression of AS. These biomimetic nanoparticles may be potential drug delivery systems for safe and effective anti-AS applications.


Asunto(s)
Membrana Celular , Células Endoteliales , Macrófagos , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Sirolimus/administración & dosificación , Animales , Aterosclerosis , Materiales Biomiméticos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Portadores de Fármacos , Técnicas In Vitro , Ensayo de Materiales , Ratones , Fagocitosis , Placa Aterosclerótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA