Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 18(17): e2200175, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307967

RESUMEN

Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.


Asunto(s)
Grafito , Nanoestructuras , Purificación del Agua , Álcalis , Análisis Costo-Beneficio , Interacciones Hidrofóbicas e Hidrofílicas , Pinzas Ópticas , Polietileno
2.
Macromol Rapid Commun ; 43(18): e2200387, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35689512

RESUMEN

With the rapid advance of electronics, the light, flexible, and multifunctional composite films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management are highly desirable for next-generation portable and wearable electronic devices. Herein, a series of flexible and ultrathin natural rubber/MXene/carbon nanotubes (NR/MXene/CNTs) composite films with sandwich structure are constructed layer by layer through a facile vacuum-assisted filtration method for EMI shielding and Joule heating application. The fabricated NR/MXene/CNTs-50 composite film, with NR/MXene as inner layer and NR/CNTs as out layers, not only has high EMI shielding efficiency, but also has excellent comprehensive mechanical properties at the thickness of only 200 µm. In addition, the superior environmental durability, high electrothermal conversion efficiency, hydrophobicity, and fine performance stability after periodic cyclic bending make the film possess more value in practical application.


Asunto(s)
Nanotubos de Carbono , Fenómenos Electromagnéticos , Goma
3.
Int J Biol Macromol ; 256(Pt 2): 128469, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040153

RESUMEN

Conventional polylactic acid (PLA) melt plasticization and toughening processes are typically achieved at the expense of PLA strength and transparency, which is clearly detrimental to its application in areas such as smart home and food packaging. Herein, an ultraviolet (UV)-protective PLA-based composite (PP6) that simultaneously achieves high strength (63.3 MPa), high plasticity (125.3 %), and enhanced toughness (4.3 kJ/m2) by adding only 6 wt% poly(3-hydroxybutyrate-4-hydroxybutyrate) (P34HB) under the assist of 1 wt% chain extender was prepared using melt blending technique. Benefiting from the cross-linking effect of the chain extender and the elongational flow during processing, the compatibility between P34HB and PLA, as well as the thermomechanical properties, heat resistance, and biodegradable properties of the composite, have been enhanced significantly. The extremely low melt enthalpy (1.9 J/g) and the low crystallinity PLA phase contribute to an appropriate transparency (78.3 % of glass in 400-1100 nm). The prepared composites display mid- and long-wave UV-protective performance, which is superior to conventional industrial glasses. Through the superior elongational rheology technology, PP6 maintains favorable overall properties even after six thermomechanical cycles. Collectively, the composite fabricated in this work is an attractive candidate for future applications such as smart windows, food packaging, agricultural films, and biomedical applications.


Asunto(s)
Vidrio , Poliésteres , Calor , Reología
4.
Int J Biol Macromol ; 242(Pt 4): 125091, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247709

RESUMEN

Poly(lactic acid) (PLA), as a biodegradable material, finds wide applications in packaging, automotive, and biological industries. However, achieving high strength, toughness, ultra-transparency, and heat resistance simultaneously in pure PLA through continuous one-step manufacturing remains a significant challenge. In this study, we addressed this challenge by utilizing the eccentric rotor extruder (ERE) in combination with cooling rolls to manufacture PLA sheets with outstanding mechanical performance. The ERE's elongational flow field combined with the cooling roller's weak stretching action induced orientation in the PLA molecular chains and promoted the formation of more mesophase, significantly improving mechanical properties. When the extrusion-stretch ratio (λ) value was 3.5, the tensile yield strength, Young's modulus, and elongation at break of ERE-fabricated samples ER-3.5 reached 86.2 MPa, 1777 MPa, and 57.9 %, respectively. Compared to the SE-3.5 samples manufactured with traditional methods, the increases were 38.8 %, 25.8 %, and 9.4 times, respectively. Additionally, the ERE manufactured samples maintained ultra-transparency and high heat resistance, making them suitable for food packaging, biomedicine, and other related fields. This methodology provides an efficient industrial-scale approach for manufacturing neat, biodegradable PLA with outstanding mechanical performance and ultra-transparency.


Asunto(s)
Calor , Poliésteres , Transición de Fase , Frío
5.
ACS Appl Mater Interfaces ; 15(39): 46538-46549, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729522

RESUMEN

A transparent film integrating antifouling, antifogging, and antibacterial properties is crucial for its application as a protective mask, goggles, or lens. Herein, applying dynamic injection molding coupled with a bionic gradient template, a fast and efficient method is proposed for the preparation of the bionic polystyrene surface (BNPPS) with a cicada wing-inspired nanopillar structure. The contact angle of the BNPPS film increases continuously along the wing vein, while the sliding angle decreases continuously, mimicking the gradient wetting state of a cicada wing and providing excellent self-propelled removal properties for tiny water droplets. Notably, the BNPPS film has a transmittance higher than 90% and a reflectivity lower than 5% in the visible light range. Dyeing water, milk, juice, cola, and ink can slide smoothly from the BNPPS film surface without leaving any residue. Importantly, the nanopillars on the BNPPS film surface can penetrate and kill most of the Escherichia coli within 20 min. Therefore, the prepared BNPPS film with sufficient mechanical strength gathers the unique properties of the cicada wing together. The proposed research is expected to offer valuable guidance for fabricating self-cleaning, antifogging, and antibacterial optical devices that could be utilized in medical and vision systems operating in harsh environments.


Asunto(s)
Hemípteros , Poliestirenos , Animales , Humectabilidad , Antibacterianos/farmacología , Antibacterianos/química , Agua , Escherichia coli
6.
ACS Appl Mater Interfaces ; 14(40): 45533-45544, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178300

RESUMEN

The integration of renewable solar energy-driven interfacial evaporation and photocatalysis has recently emerged as one of the most promising technologies for simultaneous freshwater production and pollutant removal. However, the construction of an advanced integrated system with the merit of a fast supply of water and pollutant molecules remains challenging for efficient solar-driven evaporation and photocatalytic performance. Herein, inspired by the transpiration of plants, we fabricate a biomimetic, vertically channeled polypyrrole/foam-like carbon nitride/poly(vinyl alcohol) hydrogel (PCH) by directional freeze-drying. We prove that the vertically aligned channels not only reduce heat loss and improve energy conversion efficiency but also facilitate the transport of water and organic pollutants to the air-water interface. Benefiting from the advantages above, the PCH evaporator presents a high solar evaporation efficiency of 92.5%, with the evaporation rate achieving 2.27 kg m-2 h-1 under 1 kW m-2 irradiation, exceeding many advanced interfacial solar-driven evaporators. Meanwhile, PCH reaches a degradation efficiency of 90.6% within 1 h when dealing with tetracycline (a typical antibiotic)-polluted water, remarkably higher than that of the hydrogel without vertically aligned channels (68.6%). Furthermore, the as-formed reactive oxygen species effectively kill Gram-positive and Gram-negative bacterial in the source water, achieving the all-round water purification. In an outdoor experiment, after 11 h of sunlight irradiation, the tetracycline degradation efficiency and freshwater production of the PCH evaporator rise to 99.0% and 6.2 kg m-2, respectively. This work highlights the novel biomimetic approach to fabricate multifunctional photothermal materials for simultaneous freshwater production and polluted-water remediation.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Antibacterianos , Biomimética , Hidrogeles , Polímeros , Alcohol Polivinílico , Pirroles , Especies Reactivas de Oxígeno , Tetraciclinas , Agua
7.
ACS Nano ; 16(10): 16624-16635, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36240110

RESUMEN

The rational utilization and circulation of multiple energy sources is an effective way to address the crises of energy shortages and environmental pollution. Herein, microextrusion compression molding, an industrialized polymer molding technology that combines melt blending and compression molding, is proposed for the mass production of a bioinspired micro/nanostructured polyethylene/poly(ethylene oxide)/graphene (MN-PPG) film. The MN-PPG film exhibits robust shape stability, high storage energy density, and excellent thermal management capability owing to the cocontinuous network formed by poly(ethylene oxide) and the polyethylene matrix. The MN-PPG film has sufficient photothermal property due to the uniformly dispersed graphene nanosheets and the bioinspired surface micro/nanostructures. Interestingly, the MN-PPG film surface exhibits durable superhydrophobicity, acid/alkali resistance, and active deicing performance. Further, a multifunctional energy harvesting and circulation system was established by integrating the MN-PPG film, an LED chip, and a thermoelectric module. The hybrid system produced an open-circuit voltage of 315.4 mV and power output of 2.5 W m-2 under 3 sun irradiation. Furthermore, the afterheat generated by the LED chips at night can be converted into electricity through thermoelectric conversion. The proposed method enables the large-scale fabrication of multifunctional phase change composites for energy harvesting in harsh environments.


Asunto(s)
Grafito , Nanoestructuras , Grafito/química , Polietilenglicoles , Óxido de Etileno , Nanoestructuras/química , Polímeros/química , Polietilenos , Álcalis
8.
Adv Mater ; 34(17): e2107938, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34969155

RESUMEN

Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.


Asunto(s)
Nanofibras , Antibacterianos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Nanofibras/química
9.
ACS Appl Mater Interfaces ; 12(11): 13411-13420, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32105444

RESUMEN

Poly(lactic acid) (PLA) as one of the most promising biodegradable polymers is being tremendously restricted in large-scale applications by the notorious toughness, ductility, and heat distortion resistance. Manufacturing PLA with excellent toughness, considerable ductility, balanced strength, and great heat distortion resistance simultaneously is still a great challenge. Natural structural materials usually possess excellent strength and toughness by elaborately constructed sophisticated hierarchical architectures, however, completely reproducing natural structural materials' architecture have evidenced to be difficult. Inspired by the hierarchical construction of the compact bone, an innovational method with an intensive and continuous elongational flow field and facile annealing process was developed to create bone-mimicking structured PLA at an industrial scale. The bone-mimicking structured PLA with unique and novel hierarchical architectures of interlocked 3D network lamellae and large extended-chain lamellae connecting the regular lamellae was constructed by in situ formed oriented thermoplastic poly(ether)urethane nanofibers (TNFs) acting as "collagen fibers", orderly staggered PLA lamellae behaving as "hydroxyapatite (HA) nanocrystals", and the tenacious interface functioning as a "soft protein" adhesive layer. Attributed to the unique structure, it possesses super toughness (90.3 KJ/m2), high stiffness (2.15 GPa), balanced strength (52.6 MPa), and notable heat distortion resistance (holding at 163 °C for 1 h) simultaneously. These excellent performances of the structured PLA provide it with immense potential applications in both structural and bio-engineering materials fields such as artificial bones and tissue scaffolds.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Durapatita/química , Calor , Ensayo de Materiales , Nanofibras/química , Nanopartículas/química , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA