Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 544(7651): 460-464, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28397822

RESUMEN

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.


Asunto(s)
Precipitación Química , Nanopartículas/química , Nanotecnología , Acero/química , Aluminio/química , Cobalto/química , Aleaciones Dentales/química , Elasticidad , Ensayo de Materiales , Microscopía Electrónica de Transmisión de Rastreo , Nanopartículas/ultraestructura , Acero/economía , Sincrotrones , Resistencia a la Tracción , Titanio/química , Tomografía
2.
Nat Mater ; 20(12): 1629-1634, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34239084

RESUMEN

The antagonism between strength and resistance to hydrogen embrittlement in metallic materials is an intrinsic obstacle to the design of lightweight yet reliable structural components operated in hydrogen-containing environments. Economical and scalable microstructural solutions to this challenge must be found. Here, we introduce a counterintuitive strategy to exploit the typically undesired chemical heterogeneity within the material's microstructure that enables local enhancement of crack resistance and local hydrogen trapping. We use this approach in a manganese-containing high-strength steel and produce a high dispersion of manganese-rich zones within the microstructure. These solute-rich buffer regions allow for local micro-tuning of the phase stability, arresting hydrogen-induced microcracks and thus interrupting the percolation of hydrogen-assisted damage. This results in a superior hydrogen embrittlement resistance (better by a factor of two) without sacrificing the material's strength and ductility. The strategy of exploiting chemical heterogeneities, rather than avoiding them, broadens the horizon for microstructure engineering via advanced thermomechanical processing.


Asunto(s)
Hidrógeno , Acero , Acero/química , Resistencia a la Tracción
3.
Nano Lett ; 21(19): 8135-8142, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34529916

RESUMEN

Iron and its alloys have made modern civilization possible, with metallic meteorites providing one of the human's earliest sources of usable iron as well as providing a window into our solar system's billion-year history. Here highest-resolution tools reveal the existence of a previously hidden FeNi nanophase within the extremely slowly cooled metallic meteorite NWA 6259. This new nanophase exists alongside Ni-poor and Ni-rich nanoprecipitates within a matrix of tetrataenite, the uniaxial, chemically ordered form of FeNi. The ferromagnetic nature of the nanoprecipitates combined with the antiferromagnetic character of the FeNi nanophases gives rise to a complex magnetic state that evolves dramatically with temperature. These observations extend and possibly alter our understanding of celestial metallurgy, provide new knowledge concerning the archetypal Fe-Ni phase diagram and supply new information for the development of new types of sustainable, technologically critical high-energy magnets.


Asunto(s)
Meteoroides , Aleaciones , Humanos , Hierro , Imanes , Transición de Fase
4.
J Arthroplasty ; 36(7): 2603-2611.e2, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33812716

RESUMEN

BACKGROUND: Column damage is a unique degradation pattern observed in cobalt-chromium-molybdenum (CoCrMo) femoral head taper surfaces that resemble column-like troughs in the proximal-distal direction. We investigate the metallurgical origin of this phenomenon. METHODS: Thirty-two severely damaged CoCrMo femoral head retrievals from 7 different manufacturers were investigated for the presence of column damage and chemical inhomogeneities within the alloy microstructure via metallographic evaluation of samples sectioned off from the femoral heads. RESULTS: Column damage was found to affect 37.5% of the CoCrMo femoral heads in this study. All the column-damaged femoral heads exhibited chemical inhomogeneities within their microstructures, which comprised of regions enriched or depleted in molybdenum and chromium. Column damage appears as a dissolution of the entire surface with preferential corrosion along the molybdenum and chromium depleted regions. CONCLUSION: Molybdenum and chromium depleted zones serve as initiation sites for in vivo corrosion of the taper surface. Through crevice corrosion, the degradation spreads to the adjacent non-compositionally depleted areas of the alloy as well. Future improved alloy and processing recipes are required to ensure no chemical inhomogeneity due to segregation of solute elements are present in CoCrMo femoral heads.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Aleaciones de Cromo , Corrosión , Prótesis de Cadera/efectos adversos , Humanos , Diseño de Prótesis , Falla de Prótesis
5.
J Struct Biol ; 184(2): 155-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24091039

RESUMEN

Structure and composition of teeth of the saltwater crocodile Crocodylus porosus were characterized by several high-resolution analytical techniques. X-ray diffraction in combination with elemental analysis and infrared spectroscopy showed that the mineral phase of the teeth is a carbonated calcium-deficient nanocrystalline hydroxyapatite in all three tooth-constituting tissues: Dentin, enamel, and cementum. The fluoride content in the three tissues is very low (<0.1 wt.%) and comparable to that in human teeth. The mineral content of dentin, enamel, and cementum as determined by thermogravimetry is 71.3, 80.5, and 66.8 wt.%, respectively. Synchrotron X-ray microtomography showed the internal structure and allowed to visualize the degree of mineralization in dentin, enamel, and cementum. Virtual sections through the tooth and scanning electron micrographs showed that the enamel layer is comparably thin (100-200 µm). The crystallites in the enamel are oriented perpendicularly to the tooth surface. At the dentin-enamel-junction, the packing density of crystallites decreases, and the crystallites do not display an ordered structure as in the enamel. The microhardness was 0.60±0.05 GPa for dentin, 3.15±0.15 GPa for enamel, 0.26±0.08 GPa for cementum close to the crown, and 0.31±0.04 GPa for cementum close to the root margin. This can be explained with the different degree of mineralization of the different tissue types and is comparable with human teeth.


Asunto(s)
Caimanes y Cocodrilos , Diente/química , Animales , Cemento Dental/química , Cemento Dental/diagnóstico por imagen , Cemento Dental/ultraestructura , Esmalte Dental/química , Esmalte Dental/diagnóstico por imagen , Esmalte Dental/ultraestructura , Dentina/química , Dentina/diagnóstico por imagen , Dentina/ultraestructura , Durapatita/química , Dureza , Humanos , Minerales/química , Termogravimetría , Diente/diagnóstico por imagen , Raíz del Diente/química , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/ultraestructura , Difracción de Rayos X , Microtomografía por Rayos X
6.
Nat Commun ; 14(1): 54, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599862

RESUMEN

It has long been a norm that researchers extract knowledge from literature to design materials. However, the avalanche of publications makes the norm challenging to follow. Text mining (TM) is efficient in extracting information from corpora. Still, it cannot discover materials not present in the corpora, hindering its broader applications in exploring novel materials, such as high-entropy alloys (HEAs). Here we introduce a concept of "context similarity" for selecting chemical elements for HEAs, based on TM models that analyze the abstracts of 6.4 million papers. The method captures the similarity of chemical elements in the context used by scientists. It overcomes the limitations of TM and identifies the Cantor and Senkov HEAs. We demonstrate its screening capability for six- and seven-component lightweight HEAs by finding nearly 500 promising alloys out of 2.6 million candidates. The method thus brings an approach to the development of ultrahigh-entropy alloys and multicomponent materials.


Asunto(s)
Aleaciones , Médicos , Humanos , Entropía , Minería de Datos , Conocimiento
7.
J Struct Biol ; 178(3): 290-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22503701

RESUMEN

The teeth of two different shark species (Isurus oxyrinchus and Galeocerdo cuvier) and a geological fluoroapatite single crystal were structurally and chemically characterized. In contrast to dentin, enameloid showed sharp diffraction peaks which indicated a high crystallinity of the enameloid. The lattice parameters of enameloid were close to those of the geological fluoroapatite single crystal. The inorganic part of shark teeth consisted of fluoroapatite with a fluoride content in the enameloid of 3.1 wt.%, i.e., close to the fluoride content of the geological fluoroapatite single crystal (3.64 wt.%). Scanning electron micrographs showed that the crystals in enameloid were highly ordered with a special topological orientation (perpendicular towards the outside surface and parallel towards the center). By thermogravimetry, water, organic matrix, and biomineral in dentin and enameloid of both shark species were determined. Dentin had a higher content of water, organic matrix, and carbonate than enameloid but contained less fluoride. Nanoindentation and Vicker's microhardness tests showed that the enameloid of the shark teeth was approximately six times harder than the dentin. The hardness of shark teeth and human teeth was comparable, both for dentin and enamel/enameloid. In contrast, the geological fluoroapatite single crystal was much harder than both kinds of teeth due to the absence of an organic matrix. In summary, the different biological functions of the shark teeth ("tearing" for Isurus and "cutting" for Galeocerdo) are controlled by the different geometry and not by the chemical or crystallographic composition.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Diente/química , Diente/fisiología , Animales , Esmalte Dental/química , Dentina/química , Tiburones , Diente/metabolismo
8.
Bioinspir Biomim ; 11(3): 035001, 2016 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27159921

RESUMEN

Synthetic composite materials that mimic the structure and composition of mammalian tooth enamel were prepared by mixing fluoroapatite rods (diameter 2-3 µm, thickness about 0.5 µm) and methylmethacrylate (MMA), followed by polymerization either during or immediately after ultracentrifugation, using either a tertiary amine/radical initiator for polymerization at room temperature or a radical initiator for thermal polymerization. This led to mineral-rich composites (mineral content between 50 and 75 wt%). To enhance the mechanical stability and the interaction between fluoroapatite and polymer matrix, small amounts of differently functionalized MMA monomers were added to the co-monomer mixture. Another approach was the coating of the fluoroapatite rods with silica and the polymerization in the presence of a siloxane-functionalized MMA monomer. The hardness of the composites was about 0.2-0.4 GPa as determined by Vickers indentation tests, about 2 times higher than the polymer matrix alone. The composites had a good resistance against acids (60 min at pH 3, 37 °C).


Asunto(s)
Ácidos/química , Resinas Acrílicas/síntesis química , Apatitas/química , Materiales Biomiméticos/síntesis química , Resinas Compuestas/síntesis química , Esmalte Dental/química , Polimetil Metacrilato/química , Poliuretanos/síntesis química , Animales , Corrosión , Dureza , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Tiburones
9.
Acta Biomater ; 10(9): 3959-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24797528

RESUMEN

The outer part of shark teeth is formed by the hard and mineral-rich enameloid that has excellent mechanical properties, which makes it a very interesting model system for the development of new bio-inspired dental materials. We characterized the microstructure, chemical composition and resulting local mechanical properties of the enameloid from teeth of Isurus oxyrinchus (shortfin mako shark) by performing an in-depth analysis using various high-resolution analytical techniques, including scanning electron microscopy, qualitative energy-dispersive X-ray spectroscopy and nanoindentation. Shark tooth enameloid reveals an intricate hierarchical arrangement of thin (50-80nm) and long (>1µm) crystallites of fluoroapatite with a high degree of structural anisotropy, which leads to exceptional mechanical properties. Both stiffness and hardness are surprisingly homogeneous in the shiny layer as well as in the enameloid: although both tooth phases differ in structure and composition, they show almost no orientation dependence with respect to the loading direction of the enameloid crystallites. The results were used to determine the structural hierarchy of shark teeth, which can be used as a base for establishing design criteria for synthetic bio-inspired and biomimetic dental composites.


Asunto(s)
Esmalte Dental/fisiología , Esmalte Dental/ultraestructura , Diente/fisiología , Diente/ultraestructura , Animales , Fenómenos Biomecánicos , Cristalización , Módulo de Elasticidad , Dureza , Minerales/química , Tiburones , Espectrometría por Rayos X
10.
Acta Biomater ; 5(1): 240-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18722168

RESUMEN

This paper reports a computational study of the indentation of a flat punch into a compressible elastic layer (with Poisson's ratio varying from 0 to 0.49) bonded to a rigid substrate. Based on the computational results and using Sneddon's solution [Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 1965;3:47] and the asymptotic solution [Jaffar MJ. A general solution to the axisymmetric frictional contact problem of a thin bonded elastic layer. Proc Inst Mech Eng C 1997;211:549; Yang FQ. Asymptotic solution to axisymmetric indentation of a compressible elastic thin film. Thin Solid Films 2006;515:2274] as the two limits, a simple expression of the load-depth curve valid for an arbitrary ratio of the indenter radius to the thickness of the layer is obtained. Further, a correlation between indentation load and depth for a rigid flat punch indenting into linearly viscoelastic layers bonded to a rigid substrate is proposed by using the correspondence principle. Several procedures are suggested based on the results reported in this study to determine the viscoelastic properties of the layer in the time or frequency domains. The findings are verified by numerical examples. The results may facilitate the use of depth-sensing indentation tests to characterize the mechanical properties of polymeric films or functional coatings on hard substrates, and some biological materials, e.g. articular cartilage.


Asunto(s)
Materiales Biocompatibles , Cartílago Articular/patología , Fuerza Compresiva , Fenómenos Biomecánicos , Cartílago Articular/química , Simulación por Computador , Elasticidad , Pruebas de Dureza , Humanos , Modelos Estadísticos , Modelos Teóricos , Distribución de Poisson , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA