Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 25(8): e202400132, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38416537

RESUMEN

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a ß-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.


Asunto(s)
Lignina , Estilbenos , Lignina/metabolismo , Éter , Agrobacterium/metabolismo , Éteres/química , Éteres de Etila , Glutatión/metabolismo
2.
Biotechnol Bioeng ; 121(4): 1366-1370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38079064

RESUMEN

To improve the titre of lignin-derived pyridine-dicarboxylic acid (PDCA) products in engineered Rhodococcus jostii RHA1 strains, plasmid-based overexpression of seven endogenous and exogenous lignin-degrading genes was tested. Overexpression of endogenous multi-copper oxidases mcoA, mcoB, and mcoC was found to enhance 2,4-PDCA production by 2.5-, 1.4-, and 3.5-fold, respectively, while overexpression of dye-decolorizing peroxidase dypB was found to enhance titre by 1.4-fold, and overexpression of Streptomyces viridosporus laccase enhanced titre by 1.3-fold. The genomic context of the R. jostii mcoA gene suggests involvement in 4-hydroxybenzoate utilization, which was consistent with enhanced whole cell biotransformation of 4-hydroxybenzoate by R. jostii pTipQC2-mcoA. These data support the role of multi-copper oxidases in bacterial lignin degradation, and provide an opportunity to enhance titres of lignin-derived bioproducts.


Asunto(s)
Lignina , Parabenos , Rhodococcus , Lignina/metabolismo , Peroxidasas/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Piridinas/metabolismo
3.
Biochemistry ; 58(52): 5281-5293, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30946572

RESUMEN

A thiamine diphosphate-dependent enzyme annotated as a benzoylformate decarboxylase is encoded by gene cluster ro02984-ro02986 in Rhodococcus jostii RHA1 previously shown to generate vanillin and 4-hydroxybenzaldehyde from lignin oxidation, and a closely related gene cluster is also found in the genome of Pseudomonas fluorescens Pf-5. Two hypotheses for possible pathways involving a thiamine diphosphate-dependent cleavage, either C-C cleavage of a ketol or diketone aryl C3 substrate or decarboxylation of an aryl C2 substrate, were investigated by expression and purification of the recombinant enzymes and expression of dehydrogenase and oxidase enzymes also found in the gene clusters. The ThDP-dependent enzymes showed no activity for cleavage of aryl C3 ketol or diketone substrates but showed activity for decarboxylation of benzoylformate and 4-hydroxybenzoylformate. A flavin-dependent oxidase encoded by gene ro02984 was found to oxidize either mandelic acid or phenylglyoxal. The crystal structure of the P. fluorescens decarboxylase enzyme was determined at 1.69 Å resolution, showing similarity to structures of known benzoylformate decarboxylase enzymes. The P. fluorescens decarboxylase enzyme showed enhanced carboligase activity between vanillin and acetaldehyde, rationalized by the presence of alanine versus serine at residue 73 in the enzyme active site, which was investigated further by site-directed mutagenesis of this residue. A hypothesis for a pathway for degradation of aryl C2 fragments arising from oxidative cleavage of phenylcoumaran and diarylpropane structures in lignin is proposed.


Asunto(s)
Carboxiliasas/metabolismo , Lignina/metabolismo , Pseudomonas fluorescens/enzimología , Rhodococcus/enzimología , Tiamina Pirofosfato/metabolismo , Carboxiliasas/química , Carboxiliasas/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Lignina/química , Modelos Moleculares , Familia de Multigenes/genética , Pseudomonas fluorescens/genética , Rhodococcus/genética
4.
Curr Opin Chem Biol ; 55: 26-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31918394

RESUMEN

The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Enzimas/química , Lignina/química , Plantas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Biomasa , Técnicas Biosensibles , Biotransformación , Enzimas/metabolismo , Hidrocarburos Aromáticos/química , Lignina/metabolismo , Metagenoma , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Bibliotecas de Moléculas Pequeñas/química
5.
ACS Chem Biol ; 13(10): 2920-2929, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30247873

RESUMEN

Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl-Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-ß-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20-40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.


Asunto(s)
Radical Hidroxilo/química , Lignina/química , Sphingobacterium/enzimología , Superóxido Dismutasa/química , Secuencia de Aminoácidos , Catálisis , Desmetilación , Escherichia coli/enzimología , Peróxido de Hidrógeno/química , Modelos Químicos , Mutación , Oxidación-Reducción , Pseudomonas putida/enzimología , Alineación de Secuencia , Superóxido Dismutasa/genética , Triticum/química
6.
ACS Chem Biol ; 10(10): 2286-94, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26198187

RESUMEN

The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cß bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.


Asunto(s)
Lignina/metabolismo , Manganeso/metabolismo , Sphingobacterium/enzimología , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Lignina/química , Modelos Biológicos , Estructura Molecular , Oxidación-Reducción , Proteómica , Alineación de Secuencia , Superóxido Dismutasa/química , Superóxido Dismutasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA