Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 340: 118013, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121005

RESUMEN

The input of agro-pollutants, such as microplastics and nanopesticides, on farmlands is widespread and may facilitate biological invasions in agroecosystems. Here, the effects of agro-pollutants that promote invasion of congener species is studied by examining the growth performance of native Sphagneticola calendulacea and its invasive congener, S. trilobata, when grown in a native only, invasive only and mixed community. Sphagneticola calendulacea naturally occurs in croplands in southern China, while S. trilobata was introduced to this region and has since naturalized, encroaching onto farmland. In our study, each plant community was subjected to the following treatments: control, microplastics only, nanopesticides only, and both microplastics and nanopesticides. The effects of the treatments on soils of each plant community were also examined. We found that aboveground, belowground, and photosynthetic traits of S. calendulacea were significantly inhibited by the combined microplastics and nanopesticides treatment in the native and mixed communities. The relative advantage index of S. trilobata was 69.90% and 74.73% higher under the microplastics only and nanopesticides only treatments respectively compared to S. calendulacea. Soil microbial biomass, enzyme activity, gas emission rates, and chemicals in each community were reduced when treated with both microplastics and nanopesticides. Yet, soil microbial biomass of carbon and nitrogen, CO2 emission rates and nitrous oxide rates were significantly higher (56.08%, 58.33%, 36.84% and 49.95% respectively) in the invasive species community than in the native species community under microplastics and nanopesticides. Our results suggest that the addition of agro-pollutants to soils favors the more resistant S. trilobata and suppresses the less tolerant S. calendulacea. Soil properties from the native species community are also more impacted by agro-pollutants than substrates supporting the invasive species. Future studies should explore the effects of agro-pollutants by comparing other invasive and native species and considering human activities, industry, and the soil environment.


Asunto(s)
Asteraceae , Contaminantes Ambientales , Humanos , Microplásticos , Plásticos , Especies Introducidas , Contaminación Ambiental , Suelo/química , Microbiología del Suelo
2.
Sci Total Environ ; 921: 171135, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402976

RESUMEN

The diversity-invasibility hypothesis predicts that native plant communities with high biodiversity should be more resistant to invasion than low biodiversity communities. However, observational studies have found that there is often a positive relationship between native community diversity and invasibility. Pollutants were not tested for their potential to cause this positive relationship. Here, we established native communities with three levels of diversity (1, 2 and 4 species) and introduced an invasive plant [Symphyotrichum subulatum (Michx.) G. L. Nesom] to test the effects of different pollutant treatments (i.e., unpolluted control, microplastics (MPs) alone, cadmium (Cd) alone, and their combination) on the relationship between native community diversity and community invasibility. Our results indicate that different MPs and Cd treatments altered the invasibility of native communities, but this effect may depend on the type of pollutant. MPs single treatment reduced invasion success, and the degree of reduction increased with increasing native community diversity (Diversity 2: - 14.1 %; Diversity 4: - 63.1 %). Cd single treatment increased the aboveground biomass of invasive plants (+ 40.2 %) and invasion success. The presence of MPs inhibited the contribution of Cd to invasion success. Furthermore, we found that the complementarity and selection effects of the native community were negatively correlated with invasion success, and their relative contributions to invasion success also depended on the pollutant type. We found new evidence of how pollutants affect the relationship between native community diversity and habitat invasibility, which provides new perspectives for understanding and managing biological invasions in the context of environmental pollution. This may contribute to promoting the conservation of biodiversity, especially in ecologically sensitive and polluted areas.


Asunto(s)
Cadmio , Contaminantes Ambientales , Cadmio/toxicidad , Microplásticos , Plásticos , Ecosistema , Biodiversidad , Plantas , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA