Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Periodontal Res ; 58(6): 1235-1247, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37712743

RESUMEN

BACKGROUND: Periodontal ligament stem cells (PDLSCs) are the most potential cells in periodontal tissue regeneration and bone tissue regeneration. Our prior work had revealed that WD repeat-containing protein 72 (WDR72) was crucial for osteogenic differentiation of PDLSCs. Here, we further elucidated its underlying mechanism in PDLSC osteogenic differentiation. METHODS: Human PDLSCs, isolated and identified by flow cytometry, were prepared for osteogenic differentiation induction. Levels of WDR72, long non-coding RNA X-Inactive Specific Transcript (XIST), upstream stimulatory factor 2 (USF2), and osteogenic marker genes (Runx2, Osteocalcin, and Collagen I) in human PDLSCs and clinical specimens were detected by RT-qPCR. Protein expressions of WDR72, Runx2, Osteocalcin, and Colla1 were tested by Western blot. The interactions among the molecules were verified by RIP, RNA pull-down, ChIP, and luciferase reporter assays. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS: WDR72 was decreased in periodontal tissues of periodontitis patients, and overexpression reversed TNF-α-mediated suppressive effects on PDLSC osteogenic differentiation. Mechanically, XIST recruited the enrichment of USF2 to the WDR72 promoter region, thereby positively regulating WDR72. WDR72 silencing overturned XIST-mediated biological effects in PDLSCs. CONCLUSION: WDR72, regulated by the XIST/USF2 axis, enhances osteogenic differentiation of PDLSCs, implying a novel strategy for alleviating periodontitis.


Asunto(s)
Periodontitis , ARN Largo no Codificante , Humanos , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteocalcina/metabolismo , Osteogénesis , Ligamento Periodontal , Periodontitis/metabolismo , Proteínas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Factores Estimuladores hacia 5'/metabolismo
2.
PhytoKeys ; 192: 37-44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437389

RESUMEN

Impatiensliupanshuiensis (Balsamianceae), belonging to I.subgen.Impatiens, is recognised as a new species from Guizhou, China and it is described and illustrated. It is morphologically similar to I.xanthocephala W.W. Sm. in its yellow flowers, extremely small basal lobes on lateral united petals, broadly-dolabriform distal lobes and funnelform lower sepal. However, it is distinctive in the number of lateral sepals, teeth on the margin of lateral sepals, the recurvature of the dorsal petal, the number of lateral veins, the shape and size of the lamina and the type of lamina margin. A detailed description of the new species and colour photographs are provided. Its geographical distribution and morphology are also compared to similar species.

3.
Artículo en Inglés | MEDLINE | ID: mdl-31159351

RESUMEN

Plastic polymers are widely used in agriculture, industry, and our daily life because of their convenient and economic properties. However, pollution caused by plastic polymers, especially polyethylene (PE), affects both animal and human health when they aggregate in the environment, as they are not easily degraded under natural conditions. In this study, Enterobacter sp. D1 was isolated from the guts of wax moth (Galleria mellonella). Microbial colonies formed around a PE film after 14 days of cultivation with D1. Roughness, depressions, and cracks were detected on the surface of the PE film by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) showed the presence of carbonyl functional groups and ether groups on the PE film that was treated with D1. Liquid chromatography-tandem mass spectrometry (LC-MS) also revealed that the contents of certain alcohols, esters, and acids were increased as a result of the D1 treatment, indicating that oxidation reaction occurred on the surface of the PE film treated with D1 bacteria. These observations confirmed that D1 bacteria has an ability to degrade PE.


Asunto(s)
Enterobacter/metabolismo , Mariposas Nocturnas/microbiología , Polietileno/química , Animales , Biodegradación Ambiental , Enterobacter/clasificación , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA