Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioprocess Biosyst Eng ; 44(4): 713-725, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33387004

RESUMEN

Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10-90% v/v), and their cooling rate (VC 0.25-0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.


Asunto(s)
Biotecnología/métodos , Celulosa/química , Microbiología Industrial/métodos , Kluyveromyces/metabolismo , Malus , Polisacáridos/química , Xilitol/química , Anacardium/metabolismo , Cristalización , Etanol/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Hidrólisis , Líquidos Iónicos , Microscopía Electrónica de Rastreo , Solubilidad , Solventes , Ácidos Sulfúricos/química , Temperatura , Factores de Tiempo , Xilosa/metabolismo
2.
Int J Biol Macromol ; 262(Pt 2): 130169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365138

RESUMEN

Hydrogels are versatile materials with a three-dimensional network structure that can retain water and release bioactive compounds. They have found applications in various fields, including agriculture, biomaterial synthesis, and pharmaceuticals. Incorporating natural antimicrobial compounds into hydrogels is a promising approach to developing non-toxic biomedical materials, particularly for wound healing dressings. It was evaluated the extraction and use of cashew apple bagasse lignin (CAB-Lig) due to its healing, anti-inflammatory, and antimicrobial properties for producing a hydrogel-based bandage. The extraction process involved acid and alkali treatments followed by precipitation. The antimicrobial potential of CAB-Lig was evaluated at different concentrations for formulating hydrogels. Hydrogels containing 0.1 % and 3 % lignin showed high swelling and liquid retention abilities. The 3 % lignin hydrogel exhibited effectiveness against Escherichia coli and Staphylococcus aureus. Incorporating CAB-Lig into the hydrogel structure improved its mechanical properties, making it more suitable for application as a bandage. Moreover, the extracted lignin showed low toxicity, indicating its safe use. A bandage was formulated by combining the CAB-Lig-based hydrogel with polyester, which possessed antimicrobial properties and demonstrated biocompatibility (L929 and HaCat cells). The results confirmed the potential of CAB-Lig for synthesizing hydrogels and dressings with antimicrobial properties, offering a sustainable solution for utilizing lignocellulosic biomass.


Asunto(s)
Anacardium , Antiinfecciosos , Celulosa , Lignina/farmacología , Lignina/química , Hidrogeles/farmacología , Hidrogeles/química , Anacardium/química , Antiinfecciosos/farmacología , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Vendajes
3.
J Ind Microbiol Biotechnol ; 38(8): 1099-107, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21116682

RESUMEN

The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (µ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.


Asunto(s)
Anacardium/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Kluyveromyces/metabolismo , Arabinosa/metabolismo , Biocombustibles/economía , Biomasa , Biotecnología , Conservación de los Recursos Energéticos , Etanol/economía , Fermentación , Glucosa/metabolismo , Ácidos Sulfúricos/química , Xilitol/metabolismo , Xilosa
4.
Int J Biol Macromol ; 186: 933-951, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273343

RESUMEN

Polylactic acid (PLA) has been highlighted as an important polymer due to its high potential for applicability in various areas, such as in the chemical, medical, pharmaceutical or biotechnology field. Very recently, studies have reported its use as a basic component for the production of personal protective equipment (PPE) required for the prevention of Sars-Cov-2 contamination, responsible for the cause of coronavirus disease, which is currently a major worldwide sanitary and social problem. PLA is considered a non-toxic, biodegradable and compostable plastic with interesting characteristics from the industrial point of view, and it emerges as a promising product under the concept of "green plastic", since most of the polymers produced currently are petroleum-based, a non-renewable raw material. Biotechnology routes have been mentioned as potential methodologies for the production of this polymer, especially by enzymatic routes, in particular by use of lipases enzymes. The availability of pure lactic acid isomers is a fundamental aspect of the manufacture of PLA with more interesting mechanical and thermal properties. Due to the technological importance that PLA-based polymers are acquiring, as well as their characteristics and applicability in several fields, especially medical, pharmaceutical and biotechnology, this review article sought to gather very recent information regarding the development of research in this area. The main highlight of this study is that it was carried out from a biotechnological point of view, aiming at a totally green bioplastic production, since the obtaining of lactic acid, which will be used as raw material for the PLA synthesis, until the degradation of the polymer obtained by biological routes.


Asunto(s)
Biotecnología/métodos , Poliésteres/metabolismo , Tecnología Química Verde , Humanos , Poliésteres/química
5.
Bioresour Technol ; 224: 694-701, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27864129

RESUMEN

To enhance the enzymatic digestibility of cashew apple bagasse (CAB) feedstock in order to produce sugar fermentation-derived bioproducts, the CAB was subjected to three different pretreatments with the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA) and characterized by FTIR, NMR and chemical methods. All conditions were able to delignify CAB, however the best lignin removal (95.8%) was achieved through the method performed with 8.7% w/w of CAB/2-HEAA ratio at 130°C for 24h. Although the cellulose crystallinity has been increased in CAB treated with the ionic liquid, but this fact did not influence its digestibility. Nevertheless, the pretreatment with 2-HEAA enhanced significantly the cellulose digestibility, increasing the glucose yield from 48 to 747.72mgglucose/gCAB. Furthermore, 2-HEAA pretreatment was efficient even with reused ionic liquid, obtaining high glucose concentration.


Asunto(s)
Anacardium/química , Biotecnología/métodos , Líquidos Iónicos/química , Acetatos/química , Anacardium/metabolismo , Celulasa/química , Celulasa/metabolismo , Celulosa/química , Celulosa/metabolismo , Etanolamina/química , Glucosa/química , Glucosa/metabolismo , Hidrólisis , Residuos Industriales , Lignina/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
6.
Bioresour Technol ; 179: 249-259, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25545094

RESUMEN

The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and ß-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB).


Asunto(s)
Álcalis/farmacología , Anacardium/química , Celulasa/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Peróxido de Hidrógeno/farmacología , beta-Glucosidasa/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Celulosa/análisis , Pruebas de Enzimas , Fermentación/efectos de los fármacos , Glucosa/análisis , Hidrólisis/efectos de los fármacos , Factores de Tiempo , Xilosa/análisis
7.
Bioresour Technol ; 139: 249-56, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23665519

RESUMEN

The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB.


Asunto(s)
Álcalis/farmacología , Anacardium/efectos de los fármacos , Biotecnología/métodos , Celulosa/metabolismo , Etanol/metabolismo , Peróxido de Hidrógeno/farmacología , Biomasa , Celulasa/metabolismo , Glucosa/metabolismo , Lignina/aislamiento & purificación , Factores de Tiempo
8.
Acta sci., Biol. sci ; 39(4): 423-430, Oct. - Dec. 2017. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-878455

RESUMEN

The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P/S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, η = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production.


As algas marinhas são recursos naturais ricos em polissacarídeos sulfatados e neutros. A espécie de macroalga tropical utilizada neste estudo (Solieria filiformis) apresentou teores de carboidratos de 65,8% (m/m), proteínas de 9,6% (m/m), lipídios de 1,7% (m/m), umidade de 7,0% (m/m) e 15,9 % (m/m) de cinzas. A macroalga seca foi facilmente hidrolisada em condições brandas, na presença de ácido sulfúrico 0,5 M, por 20 min, produzindo monossacarídeos fermentáveis com uma eficiência de hidrólise máxima de 63,21%. A galactose e a glicose presentes no hidrolisado foram fermentadas simultaneamente por Saccharomyces cerevisiae, após aclimatação da levedura cultivada em meio contendo apenas galactose como fonte de carbono. Os parâmetros cinéticos da fermentação do hidrolisado algáceo pela levedura aclimatada a galactose foram Y(P/S) = 0,48 ± 0,02 g.g-1, PP = 0,27 ± 0,04 g.L- 1.h-1, η = 94,1%. Portanto, a macroalga S. filiformis se mostrou um recurso renovável promissor como fonte de polissacarídeos facilmente hidrolisados, gerando um meio nutritivo rico em glucose e galactose para a produção de etanol.


Asunto(s)
Carragenina , Celulosa , Fermentación , Galactosa , Algas Marinas , Ácidos Sulfúricos
9.
Appl Biochem Biotechnol ; 164(6): 929-43, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21302146

RESUMEN

In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L(-1) of NaOH (372 ± 12 and 355 ± 37 mg g(glucan)(-1) ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15-30 min) and microwave power (600-900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g (CAB-M) (-1) ) increased glucose concentration to 15 g L(-1). The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L(-1) and 1.41 g L(-1) h(-1), respectively.


Asunto(s)
Anacardium/química , Anacardium/metabolismo , Biotecnología/métodos , Celulosa/química , Celulosa/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcalis/química , Anacardium/microbiología , Biotecnología/instrumentación , Celulasa/química , Fermentación , Hidrólisis , Microondas
10.
Appl Biochem Biotechnol ; 155(1-3): 407-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19031051

RESUMEN

The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82 +/- 2 mg/g CAB-H and 730 +/- 20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 degrees C, 2-fold higher than when using 15 FPU/g bagasse, 44 +/- 2 mg/g CAB-H, and 450 +/- 50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0 +/- 0.2 g L(-1) and 3.33 g L(-1) h(-1), respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L(-1)). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L(-1)), ethanol concentration and productivity were 8.2 +/- 0.1 g L(-1) and 2.7 g L(-1) h(-1) in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.


Asunto(s)
Álcalis/química , Anacardium/metabolismo , Bebidas/microbiología , Fuentes Generadoras de Energía , Fermentación/fisiología , Ácidos Sulfúricos/química , Biotecnología/métodos , Celulosa/metabolismo , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA