Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 33(45): e2104779, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34751990

RESUMEN

Nanoparticle-based small interfering RNA (siRNA) therapy shows great promise for glioblastoma (GBM). However, charge associated toxicity and limited blood-brain-barrier (BBB) penetration remain significant challenges for siRNA delivery for GBM therapy. Herein, novel cation-free siRNA micelles, prepared by the self-assembly of siRNA-disulfide-poly(N-isopropylacrylamide) (siRNA-SS-PNIPAM) diblock copolymers, are prepared. The siRNA micelles not only display enhanced blood circulation time, superior cell take-up, and effective at-site siRNA release, but also achieve potent BBB penetration. Moreover, due to being non-cationic, these siRNA micelles exert no charge-associated toxicity. Notably, these desirable properties of this novel RNA interfering (RNAi) nanomedicine result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. Moreover, as a novel type of polymeric micelle, the siRNA micelle displays effective drug loading ability. When utilizing temozolomide (TMZ) as a model loading drug, the siRNA micelle realizes effective synergistic therapy effect via targeting the key gene (signal transducers and activators of transcription 3, STAT3) in TMZ drug resistant pathways. The authors' results show that this siRNA micelle nanoparticle can serve as a robust and versatile drug codelivery platform, and RNAi nanomedicine and for effective GBM treatment.


Asunto(s)
Portadores de Fármacos/química , Micelas , Nanomedicina , ARN Interferente Pequeño/química , Resinas Acrílicas/química , Animales , Barrera Hematoencefálica/metabolismo , Carbocianinas/química , Cationes/química , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Ratones , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Temozolomida/uso terapéutico , Distribución Tisular , Trasplante Heterólogo
2.
Acta Biomater ; 58: 432-441, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28602854

RESUMEN

A chemical template strategy was put forward to synthesize monodisperse rattle-type magnetic carbon (Fe3O4@C) hollow microspheres. During the synthesis procedure, monodisperse Fe2O3 microspheres were used as chemical template, which released Fe3+ ions in acidic solution and initiated the in-situ polymerization of pyrrole into polypyrrole (PPy) shell. With the continual acidic etching of Fe2O3 microspheres, rattle-type Fe2O3@PPy microspheres were generated with the cavity appearing between the PPy shell and left Fe2O3 core, which were then transformed into Fe3O4@C hollow microspheres through calcination in nitrogen atmosphere. Compared with traditional physical template, the shell and cavity of rattle-type hollow microspheres were generated in one step using the chemical template method, which obviously saved the complex procedures including the coating and removal of middle shells. The experimental results exhibited that the rattle-type Fe3O4@C hollow microspheres with different parameters could be regulated through controlled synthesis of the intermediate Fe2O3@PPy product. Moreover, when the rattle-type Fe3O4@C hollow microspheres were investigated as drug carrier, they manifested sustained-release behaviour of doxorubicin, justifying their promising applications as carriers in drug delivery. STATEMENT OF SIGNIFICANCE: The aim of the present study was first to synthesize rattle-type Fe3O4@C hollow microspheres through a simple synthesis method as a drug carrier. Here a chemical template synthesis of rattle-type hollow microspheres was developed, which saved the complex procedures including the coating and removal of middle shells in traditional physical template. Second, all the influence factors in the reaction processes were systematically investigated to obtain rattle-type Fe3O4@C hollow microspheres with controlled parameters. Third, the rattle-type Fe3O4@C hollow microspheres were studied as drug carriers and the influences of their structural parameters on drug loading and releasing performance were investigated.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Óxido Ferrosoférrico , Microesferas , Polímeros , Pirroles , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/farmacocinética , Óxido Ferrosoférrico/farmacología , Células HeLa , Humanos , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacología , Pirroles/química , Pirroles/farmacocinética , Pirroles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA