Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 9(8): 8291-302, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26235314

RESUMEN

Multifunctional tailorable composite systems, specifically designed for oral dual-delivery of a peptide (glucagon-like peptide-1) and an enzymatic inhibitor (dipeptidyl peptidase 4 (DPP4)), were assembled through the microfluidics technique. Both drugs were coloaded into these systems for a synergistic therapeutic effect. The systems were composed of chitosan and cell-penetrating peptide modified poly(lactide-co-glycolide) and porous silicon nanoparticles as nanomatrices, further encapsulated in an enteric hydroxypropylmethylcellulose acetylsuccinate polymer. The developed multifunctional systems were pH-sensitive, inherited by the enteric polymer, enabling the release of the nanoparticles only in the simulated intestinal conditions. Moreover, the encapsulation into this polymer prevented the degradation of the nanoparticles' modifications. These nanoparticles showed strong and higher interactions with the intestinal cells in comparison with the nonmodified ones. The presence of DPP4 inhibitor enhanced the peptide permeability across intestinal cell monolayers. Overall, this is a promising platform for simultaneously delivering two drugs from a single formulation. Through this approach peptides are expected to increase their bioavailability and efficiency in vivo both by their specific release at the intestinal level and also by the reduced enzymatic activity. The use of this platform, specifically in combination of the two antidiabetic drugs, has clinical potential for the therapy of type 2 diabetes mellitus.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Péptido 1 Similar al Glucagón/metabolismo , Microfluídica/métodos , Nanopartículas/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Quitosano/química , Técnicas de Cocultivo , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/farmacología , Composición de Medicamentos/métodos , Liberación de Fármacos , Sinergismo Farmacológico , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/farmacología , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Cinética , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Nanopartículas/ultraestructura , Permeabilidad , Poliglactina 910/química , Porosidad , Silicio/química
2.
ACS Appl Mater Interfaces ; 7(3): 2006-15, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25539741

RESUMEN

Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.


Asunto(s)
Alquinos/química , Proteínas Sanguíneas/química , Nanopartículas/química , Péptidos/química , Polímeros/química , Silicio/química , Adhesión Celular , Línea Celular , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Humanos , Polímeros/síntesis química , Porosidad
3.
Biomaterials ; 35(26): 7488-500, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24906344

RESUMEN

The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/metabolismo , Endosomas/metabolismo , Maleatos/metabolismo , Metotrexato/administración & dosificación , Nanopartículas/metabolismo , Polietileneimina/metabolismo , Polietilenos/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Preparaciones de Acción Retardada/química , Femenino , Humanos , Iones/química , Iones/metabolismo , Células MCF-7 , Maleatos/química , Metotrexato/farmacología , Nanopartículas/química , Nanopartículas/ultraestructura , Polietileneimina/química , Polietilenos/química , Polímeros , Porosidad , Silicio , Propiedades de Superficie
4.
Biomaterials ; 35(33): 9199-207, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25109441

RESUMEN

Glucagon like peptide-1 (GLP-1) is an incretin hormone that is in the pipeline for type 2 diabetes mellitus (T2DM) therapy. However, oral administration of GLP-1 is hindered by the harsh conditions of the gastrointestinal tract and poor bioavailability. In this study, three nanosystems composed by three different biomaterials (poly(lactide-co-glycolide) polymer (PLGA), Witepsol E85 lipid (solid lipid nanoparticles, SLN) and porous silicon (PSi) were developed and loaded with GLP-1 to study their permeability in vitro. All the nanoparticles presented a size of approximately 200 nm. The nanoparticles' interaction with the mucus and the intestinal cells were enhanced after coating with chitosan (CS). PSi nanosystems presented the best association efficiency (AE) and loading degree (LD), even though a high AE was also observed for PLGA nanoparticles and SLN. Among all the nanosystems, PLGA and PSi were the only nanoparticles able to sustain the release of GLP-1 in biological fluids when coated with CS. This characteristic was also maintained when the nanosystems were in contact with the intestinal Caco-2 and HT29-MTX cell monolayers. The CS-coated PSi nanoparticles showed the highest GLP-1 permeation across the intestinal in vitro models. In conclusion, PLGA + CS and PSi + CS are promising nanocarriers for the oral delivery of GLP-1.


Asunto(s)
Péptido 1 Similar al Glucagón/farmacocinética , Mucosa Intestinal/efectos de los fármacos , Membrana Mucosa/efectos de los fármacos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células CACO-2 , Supervivencia Celular , Quitosano/química , Portadores de Fármacos/química , Péptido 1 Similar al Glucagón/química , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Membrana Mucosa/metabolismo , Nanotecnología/métodos , Tamaño de la Partícula , Permeabilidad , Poliglactina 910/química , Porosidad , Silicio/química
5.
Biomaterials ; 35(33): 9224-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25123922

RESUMEN

Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1ß, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Nanopartículas/química , Silicio/química , Silicio/farmacología , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Polietileneimina/química , Porosidad , Propilaminas , Silanos/química , Propiedades de Superficie , Factor de Necrosis Tumoral alfa/metabolismo
6.
Biomaterials ; 35(29): 8394-405, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24985734

RESUMEN

Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Miocardio/metabolismo , Silicio/química , Animales , Materiales Biocompatibles/efectos adversos , Células Cultivadas , Portadores de Fármacos/efectos adversos , Fibrosis/inducido químicamente , Fibrosis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/genética , Masculino , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Porosidad , Ratas , Ratas Sprague-Dawley , Silicio/efectos adversos
7.
Biomaterials ; 33(11): 3353-62, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22285465

RESUMEN

Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei. The HFBII-THCPSi nanoparticles were found to be non-cytotoxic and mucoadhesive in AGS cells, prompting their use in a biodistribution study in rats after oral administration. The passage of HFBII-THCPSi nanoparticles in the rat GI tract was significantly slower than that of uncoated THCPSi, and the nanoparticles were retained in stomach by gastric mucoadhesion up to 3 h after administration. Upon entry to the small intestine, the mucoadhesive properties were lost, resulting in the rapid transit of the nanoparticles through the remainder of the GI tract. The gastroretentive drug delivery system with a dual function presented here is a viable alternative for improving drug bioavailability in the oral route.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/farmacocinética , Mucosa Gástrica/metabolismo , Tracto Gastrointestinal/metabolismo , Absorción Intestinal/fisiología , Nanocápsulas/química , Adhesividad , Administración Oral , Animales , Materiales Biocompatibles Revestidos , Masculino , Tasa de Depuración Metabólica , Nanocápsulas/administración & dosificación , Especificidad de Órganos , Porosidad , Ratas Wistar , Silicio , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA