Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 58(4): 1139-1150, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36877190

RESUMEN

BACKGROUND: A noninvasive method to track implanted biomaterials is desirable for real-time monitoring of material interactions with host tissues and assessment of efficacy and safety. PURPOSE: To explore quantitative in vivo tracking of polyurethane implants using a manganese porphyrin (MnP) contrast agent containing a covalent binding site for pairing to polymers. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: Rodent model of dorsal subcutaneous implants (10 female Sprague Dawley rats). FIELD STRENGTH/SEQUENCE: A 3-T; two-dimensional (2D) T1-weighted spin-echo (SE), T2-weighted turbo SE, three-dimensional (3D) spoiled gradient-echo T1 mapping with variable flip angles. ASSESSMENT: A new MnP-vinyl contrast agent to covalently label polyurethane hydrogels was synthesized and chemically characterized. Stability of binding was assessed in vitro. MRI was performed in vitro on unlabeled hydrogels and hydrogels labeled at different concentrations, and in vivo on rats with unlabeled and labeled hydrogels implanted dorsally. In vivo MRI was performed at 1, 3, 5, and 7 weeks postimplantation. Implants were easily identified on T1-weighted SE, and fluid accumulation from inflammation was distinguished on T2-weighted turbo SE. Implants were segmented on contiguous T1-weighted SPGR slices using a threshold of 1.8 times the background muscle signal intensity; implant volume and mean T1 values were then calculated at each timepoint. Histopathology was performed on implants in the same plane as MRI and compared to imaging results. STATISTICAL TESTS: Unpaired t-tests and one-way analysis of variance (ANOVA) were used for comparisons. A P value <0.05 was considered to be statistically significant. RESULTS: Hydrogel labeling with MnP resulted in a significant T1 reduction in vitro (T1 = 517 ± 36 msec vs. 879 ± 147 msec unlabeled). Mean T1 values of labeled implants in rats increased significantly by 23% over time, from 1 to 7 weeks postimplantation (651 ± 49 msec to 801 ± 72 msec), indicating decreasing implant density. DATA CONCLUSION: Polymer-binding MnP enables in vivo tracking of vinyl-group coupling polymers. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Medios de Contraste , Porfirinas , Femenino , Ratas , Animales , Poliuretanos , Manganeso , Hidrogeles , Estudios Prospectivos , Ratas Sprague-Dawley , Imagen por Resonancia Magnética/métodos
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563649

RESUMEN

There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química
3.
Biomacromolecules ; 18(8): 2296-2305, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28621927

RESUMEN

The use of degradable polymers in vascular tissue regeneration has sparked the need to characterize polymer biocompatibility during degradation. While tissue compatibility has been frequently addressed, studies on polymer hemocompatibility during degradation are limited. The current study evaluated the differences in hemocompatibility (platelet response, complement activation, and coagulation cascade initiation) between as-made and hydrolyzed poly(lactic-co-glycolic) acid (PLGA) and degradable polar hydrophobic ionic polyurethane (D-PHI). Platelet activation decreased (in whole blood) and platelet adhesion decreased (in blood without leukocytes) for degraded versus as-made PLGA. D-PHI showed minimal hemocompatibility changes over degradation. Leukocytes played a major role in mediating platelet activation for samples and controls, as well as influencing platelet-polymer adhesion on the degraded materials. This study demonstrates the importance of assessing the blood compatibility of biomaterials over the course of degradation since the associated changes in surface chemistry and physical state could significantly change biomaterial hemocompatibility.


Asunto(s)
Plaquetas/metabolismo , Ácido Láctico , Ensayo de Materiales , Adhesividad Plaquetaria/efectos de los fármacos , Ácido Poliglicólico , Poliuretanos , Humanos , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacología , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliuretanos/química , Poliuretanos/farmacocinética , Poliuretanos/farmacología
4.
Acta Biomater ; 173: 336-350, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989435

RESUMEN

New functional materials for engineering gingival tissue are still in the early stages of development. Materials for such applications must maintain volume and have advantageous mechanical and biological characteristics for tissue regeneration, to be an alternative to autografts, which are the current benchmark of care. In this work, methacrylated gelatin (GelMa) was photocrosslinked with synthetic immunomodulatory methacrylated divinyl urethanes and defined monomers to generate composite scaffolds. Using a factorial design, with the synthetic monomers of a degradable polar/hydrophobic/ionic polyurethane (D-PHI) and GelMa, composite materials were electrospun with polycarbonate urethane (PCNU) and light-cured in-flight. The materials had significantly different relative hydrophilicities, with unique biodegradation profiles associated with specific formulations, thereby providing good guidance to achieving desired mechanical characteristics and scaffold resorption for gingival tissue regeneration. In accelerated esterase/collagenase degradation models, the new materials exhibited an initial rapid weight loss followed by a more gradual rate of degradation. The degradation profile allowed for the early infiltration of human adipose-derived stromal/stem cells, while still enabling the graft's structural integrity to be maintained. In conclusion, the materials provide a promising candidate platform for the regeneration of oral soft tissues, addressing the requirement of viable tissue infiltration while maintaining volume and mechanical integrity. STATEMENT OF SIGNIFICANCE: There is a need for the development of more functional and efficacious materials for the treatment of gingival recession. To address significant limitations in current material formulations, we sought to investigate the development of methacrylated gelatin (GelMa) and oligo-urethane/methacrylate monomer composite materials. A factorial design was used to electrospin four new formulations containing four to five monomers. Synthetic immunomodulatory monomers were crosslinked with GelMa and electrospun with a polycarbonate urethane resulting in unique mechanical properties, and resorption rates which align with the original design criteria for gingival tissue engineering. The materials may have applications in tissue engineering and can be readily manufactured. The findings of this work may help better direct the efforts of tissue engineering and material manufacturing.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Gelatina/farmacología , Gelatina/química , Tejido Conectivo , Poliuretanos/farmacología , Poliuretanos/química
5.
Acta Biomater ; 175: 214-225, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38158104

RESUMEN

The ex vivo endothelialization of small diameter vascular prostheses can prolong their patency. Here, we demonstrate that heterotypic interactions between human adipose tissue-derived endothelial cells and perivascular cells can be exploited to accelerate the endothelialization of an electrospun ionomeric polyurethane scaffold. The scaffold was used to physically separate endothelial cells from perivascular cells to prevent their diffuse neo-intimal hyperplasia and spontaneous tubulogenesis, yet enable their paracrine cross-talk to accelerate the integration of the endothelial cells into a temporally stable endothelial lining of a continuous, elongated, and aligned morphology. Perivascular cells stimulated endothelial basement membrane protein production and suppressed their angiogenic and inflammatory activation to accelerate this biomimetic morphogenesis of the endothelium. These findings demonstrate the feasibility and underscore the value of exploiting heterotypic interactions between endothelial cells and perivascular cells for the fabrication of an endothelial lining intended for small diameter arterial reconstruction. STATEMENT OF SIGNIFICANCE: Adipose tissue is an abundant, accessible, and uniquely dispensable source of endothelial cells and perivascular cells for vascular tissue engineering. While their spontaneous self-assembly into microvascular networks is routinely exploited for the vascularization of engineered tissues, it threatens the temporal stability of an endothelial lining intended for small diameter arterial reconstruction. Here, we demonstrate that an electrospun polyurethane scaffold can be used to physically separate endothelial cells from perivascular cells to prevent their spontaneous capillary morphogenesis, yet enable their cross-talk to promote the formation of a stable endothelium. Our findings demonstrate the feasibility of engineering an endothelial lining from human adipose tissue, poising it for the rapid ex vivo endothelialization of small diameter vascular prostheses in an autologous, patient-specific manner.


Asunto(s)
Células Endoteliales , Poliuretanos , Humanos , Poliuretanos/metabolismo , Endotelio , Tejido Adiposo/metabolismo , Ingeniería de Tejidos , Prótesis Vascular
6.
Acta Biomater ; 166: 167-186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207744

RESUMEN

Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.


Asunto(s)
Hidrogeles , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Hidrogeles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Materiales Biocompatibles/química , Proliferación Celular
7.
Adv Healthc Mater ; 12(17): e2203168, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36849128

RESUMEN

Myocardial fibrosis, resulting from myocardial infarction (MI), significantly alters cardiac electrophysiological properties. As fibrotic scar tissue forms, its resistance to incoming action potentials increases, leading to cardiac arrhythmia, and eventually sudden cardiac death or heart failure. Biomaterials are gaining increasing attention as an approach for addressing post-MI arrhythmias. The current study investigates the hypothesis that a bio-conductive epicardial patch can electrically synchronize isolated cardiomyocytes in vitro and rescue arrhythmic hearts in vivo. A new conceived biocompatible, conductive, and elastic polyurethane composite bio-membrane, referred to as polypyrrole-polycarbonate polyurethane (PPy-PCNU), is developed, in which solid-state conductive PPy nanoparticles are distributed throughout an electrospun aliphatic PCNU nanofiber patch in a controlled manner. Compared to PCNU alone, the resulting biocompatible patch demonstrates up to six times less impedance, with no conductivity loss over time, as well as being able to influence cellular alignment. Furthermore, PPy-PCNU promotes synchronous contraction of isolated neonatal rat cardiomyocytes and alleviates atrial fibrillation in rat hearts upon epicardial implantation. Taken together, epicardially-implanted PPy-PCNU could potentially serve as a novel alternative approach for the treatment of cardiac arrhythmias.


Asunto(s)
Infarto del Miocardio , Polímeros , Ratas , Animales , Poliuretanos , Elastómeros , Pirroles/farmacología , Miocitos Cardíacos , Infarto del Miocardio/terapia , Arritmias Cardíacas , Conductividad Eléctrica
8.
Dent Mater ; 38(12): 1827-1840, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210221

RESUMEN

OBJECTIVE: The objective of this review article is to summarize the current literature on dental resin-based restorative (RBR) materials specifically from the perspective of emerging resin technologies, and to provide researchers with structured design criteria enabling the effective screening of new RBR developments. METHODS: The continued failure of newly introduced RBRs to address biostability without compromising function, over the last decade, are presented as a rationale to support different resin-based concepts. Several developments in the field, aimed at addressing the issues facing modern resin-based systems are summarized and their limitations discussed. A design workflow is proposed for evaluating new RBR, considering resource needs. RESULTS: While several alternative resin chemistries have been suggested over the past decade, all have shown serious limitations in replacing MA-based materials, including their limited physical and mechanical properties, and curing kinetics. Additionally, a broad and inconsistent range of laboratory methods have been used to validate these developments, leading to results that are difficult to compare across studies. A design workflow was conceptualized to facilitate the screening of novel RBRs from both a clinical and research perspective. SIGNIFICANCE: While several alternative chemistries have shown some degree of potential in emulating material property aspects of MA-based resins, a complete restorative system that is resistant to biochemical reactions in saliva has yet to achieve broad clinical adoption. To further spur development, it would be useful to have a more systematic design workflow, that may be used to easily screen new resin technologies effectively early in the design phase, so as to mitigate potential performance failures in the clinic.


Asunto(s)
Resinas Compuestas , Restauración Dental Permanente , Resinas Compuestas/química , Restauración Dental Permanente/métodos , Ésteres , Ensayo de Materiales
9.
J Biomed Mater Res A ; 110(12): 1932-1943, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35851742

RESUMEN

Synthetic scaffolds are needed for generating organized neo-myocardium constructs to promote functional tissue repair. This study investigated the biocompatibility of an elastomeric electrospun degradable polar/hydrophobic/ionic polyurethane (D-PHI) composite scaffold with human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The composite material was electrospun to generate scaffolds, with nanofibres oriented in aligned or random directions. These features enabled the authors to evaluate the effect of characteristic elements which mimic that of the native extracellular matrix (alignment, chemical heterogeneity, and fiber topography) on hiPSC-CMs activity. The functional nature of the hiPSC-CM cultured on gelatin and Matrigel-coated scaffolds were assessed, investigating the influence of protein interactions with the synthetic substrate on subsequent cell phenotype. After 7 days of culture, high hiPSC-CM viability was observed on the scaffolds. The cells on the aligned scaffold were elongated and demonstrated aligned sarcomeres that oriented parallel to the direction of the fibers, while the cells on random scaffolds and a tissue culture polystyrene (TCPS) control did not exhibit such an organized morphology. The hiPSC-CMs cultured on the scaffolds and TCPS expressed similar levels of cardiac troponin-T, but there was a higher expression of ventricular myosin light chain-2 on the D-PHI composite scaffolds versus TCPS, indicating a higher proportion of hiPSC-CM exhibiting a ventricular cardiomyocyte like phenotype. Within 7 days, the hiPSC-CMs on aligned scaffolds and TCPS beat synchronously and had similar conductive velocities. These preliminary results show that aligned D-PHI elastomeric scaffolds allow hiPSC-CMs to demonstrate important cardiomyocytes characteristics, critical to enabling their future potential use for cardiac tissue regeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanofibras , Humanos , Células Cultivadas , Gelatina/metabolismo , Miocitos Cardíacos , Cadenas Ligeras de Miosina/metabolismo , Poliestirenos , Poliuretanos , Andamios del Tejido , Troponina T/metabolismo
10.
Dent J (Basel) ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36547039

RESUMEN

Here, we explored the role of S. mutans's whole cell and discrete fractions in the degradation of type I collagen and dentinal collagen. Type I collagen gels and human demineralized dentin slabs (DS) were incubated in media alone or with one of the following: overnight (O/N) or newly inoculated (NEW) cultures of S. mutans UA159; intracellular proteins, supernatant or bacterial membranes of O/N cultures. Media from all groups were analyzed for protease-mediated release of the collagen-specific imino acid hydroxyproline. Images of type I collagen and DS were analyzed, respectively. Type I collagen degradation was highest for the supernatant (p < 0.05) fractions, followed by intracellular components and O/N cultures. Collagen degradation for DS samples was highest for O/N samples, followed by supernatant, and intracellular components (p < 0.05). There was lower detectable degradation for both type I collagen and DS from NEW culture samples (p < 0.05), and there was no type I collagen or DS degradation detected for bacterial membrane samples. Structural changes to type I collagen gel and dentinal collagen were observed, respectively, following incubation with S. mutans cultures (O/N and NEW), intracellular components, and supernatant. This study demonstrates that intracellular and extracellular proteolytic activities from S. mutans enable this cariogenic bacterium to degrade type I and dentinal collagen in a growth-phase dependent manner, potentially contributing to the progression of dental caries.

11.
Ann Biomed Eng ; 50(9): 1073-1089, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35622208

RESUMEN

Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm2 to 70 × 40 mm2. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm2: 58% of sheet area vs. 52 × 31 mm2: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (εx = εy = 8.75%) and anisotropic (εx = 12.5%, εy = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Anisotropía , Matriz Extracelular , Válvulas Cardíacas , Estrés Mecánico , Ingeniería de Tejidos/métodos
12.
ACS Appl Mater Interfaces ; 13(49): 58352-58368, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34873903

RESUMEN

Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-ß-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.


Asunto(s)
Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Oligonucleótidos/química , Animales , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células HEK293 , Humanos , Luciferasas/metabolismo , Ensayo de Materiales , Ratones , Estructura Molecular , Oligonucleótidos/genética , Oligonucleótidos/farmacología
13.
Nat Commun ; 12(1): 2875, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001908

RESUMEN

Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients. These implants undergo surface erosion, achieving tightly controlled and reproducible drug release kinetics in vitro. As an example, when used as ocular implants in rats, a dexamethasone dimer implant is shown to effectively inhibit inflammation induced by lipopolysaccharide. In a rabbit model, dexamethasone dimer intravitreal implants demonstrate predictable pharmacokinetics and significantly extend drug release duration and efficacy (>6 months) compared to a leading commercial polymeric dexamethasone-releasing implant.


Asunto(s)
Corticoesteroides/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Dexametasona/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Corticoesteroides/química , Corticoesteroides/farmacocinética , Animales , Células Cultivadas , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Dimerización , Modelos Animales de Enfermedad , Implantes de Medicamentos , Liberación de Fármacos , Polímeros/química , Conejos , Ratas , Uveítis/metabolismo , Uveítis/prevención & control
14.
ACS Biomater Sci Eng ; 6(8): 4433-4445, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455182

RESUMEN

The ability to specify an adsorbed protein layer through the polymer chemistry design of immunomodulatory biomaterials is important when considering a desired immune response, such as reducing pro-inflammatory activity. Limited work has been undertaken to elucidate the role of monomer sequence in this process, when copolymeric systems are involved. In this study, we demonstrate the advantage of an alternating radical copolymerization strategy as opposed to a random statistical copolymerization to order monomers in the synthesis of degradable polar-hydrophobic-ionic polyurethanes (D-PHI), biomaterials originally designed to reduce inflammatory monocyte activation. A monomer system consisting of a vinyl-terminated polyurethane cross-linker, maleic acid (MA), and ethyl vinyl ether (EVE), not only generated a diverse chemical environment of polar, hydrophobic, and ionic functional groups, but also formed a charge transfer complex (CTC) reactive to alternating polymerizations. Conversion of MA and EVE occurred in a constant proportion regardless of monomer availability, a phenomenon not observed in conventional D-PHI formulations. For feeds with unequal molar quantities of MA and EVE, the final conversion was limited and proportional to the limiting reagent, leading to an overall higher polyurethane cross-linker content. The presence of a reactive CTC was also found to limit the monomer conversion. Compared to a D-PHI with random monomer arrangement using methacrylic acid (MAA) and methyl methacrylate (MMA), a reduction in Fab region exposure from adsorbed immunoglobulin G and a reduction in average adherent monocyte activity were found in the sequence-controlled version. These results represent the first example of using an alternating copolymerization approach to generate regularly defined polymer chemistries in radical chain-growth biomaterials for achieving immunomodulation, and highlight the importance of considering sequence control as a design strategy for future immunomodulatory biomaterial development.


Asunto(s)
Monocitos , Poliuretanos , Adsorción , Humanos , Inmunoglobulina G , Polímeros
15.
Acta Biomater ; 111: 80-90, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32428683

RESUMEN

The use of exogenous biomolecules (BM) for the purpose of repairing and regenerating damaged cardiac tissue can yield serious side effects if used for prolonged periods. As well, such strategies can be cost prohibitive depending on the regiment and period of time applied. Alternatively, autologous monocytes/monocyte-derived macrophages (MDM) can provide a viable path towards generating an endogenous source of stimulatory BM. Biomaterials are often considered as delivery vehicles to generate unique profiles of such BM in tissues or to deliver autologous cells, that can influence the nature of BM produced by the cells. MDM cultured on a degradable polar hydrophobic ionic (D-PHI) polyurethane has previously demonstrated a propensity to increase select anti-inflammatory cytokines, and therefore there is good rationale to further investigate a broader spectrum of the cells' BM in order to provide a more complete proteomic analysis of human MDM secretions induced by D-PHI. Further, it is of interest to assess the potential of such BM to influence cells involved in the reparative state of vital tissues such as those that affect cardiac cell function. Hence, this current study examines the proteomic profile of MDM secretions using mass spectrometry for the first time, along with ELISA, following their culture on D-PHI, and compares them to two important reference materials, poly(lactic-co-glycolic acid) (PLGA) and tissue culture polystyrene (TCPS). Secretions collected from D-PHI cultured MDM led to higher levels of regenerative BM, AGRN, TGFBI and ANXA5, but lower levels of pro-fibrotic BM, MMP7, IL-1ß, IL-6 and TNFα,  when compared to MDM secretions collected from PLGA and TCPS. In the application to cardiac cell function, the secretion collected from D-PHI cultured MDM led to more human cardiac fibroblast (HCFs) migration. A lower collagen gel contraction induced by MDM secretions collected from D-PHI was supported by gene array analysis for human fibrosis-related genes. The implication of these findings is that more tailored biomaterials such as D-PHI, may lead to a lower pro-inflammatory phenotype of macrophages when used in cardiac tissue constructs, thereby enabling the development of vehicles for the delivery of interventional therapies, or be applied as coatings for sensor implants in cardiac tissue that minimize fibrosis. The general approach of using synthetic biomaterials in order to induce MDM secretions in a manner that will guide favorable regeneration will be critical in making the choice of biomaterials for tissue regeneration work in the future. STATEMENT OF SIGNIFICANCE: Immune modulation strategies currently applied in cardiac tissue repair are mainly based on the delivery of defined exogenous biomolecules. However, the use of such biomolecules may pose wide ranging systemic effects, thereby rendering them clinically less practical. The chemistry of biomaterials (used as a potential targeted delivery modality to circumvent the broad systemic effects of biomolecules) can not only affect acute and chronic toxicity but also alters the timeframe of the wound healing cascade. In this context, monocytes/monocyte-derive macrophages (MDM) can be harnessed as an immune modulating strategy to promote wound healing by an appropriate choice of the biomaterial. However, there are limited reports on the complete proteome analysis of MDM and their reaction of biomaterial related interventions on cardiac tissues and cells. No studies to date have demonstrated the complete proteome of MDM secretions when these cells were cultured on a non-traditional immune modulatory ionomeric polyurethane D-PHI film. This study demonstrated that MDM cultured on D-PHI expressed significantly higher levels of AGRN, TGFBI and ANXA5 but lower levels of MMP7, IL-1ß, IL-6 and TNFα when compared to MDM cultured on a well-established degradable biomaterials in the medical field, e.g. PLGA and TCPS, which are often used as the relative standards for cell culture work in the biomaterials field. The implications of these findings have relevance to the repair of cardiac tissues. In another aspect of the work, human cardiac fibroblasts showed significantly lower contractility (low collagen gel contraction and low levels of ACTA2) when cultured in the presence of MDM secretions collected after culturing them on D-PHI compared to PLGA and TCPS. The findings place emphasis on the importance of making the choice of biomaterials for tissue engineering and regenerative medicine applied to their use in cardiac tissue repair.


Asunto(s)
Materiales Biocompatibles , Proteoma , Fibroblastos , Humanos , Macrófagos , Monocitos , Proteómica
16.
ACS Biomater Sci Eng ; 6(1): 505-516, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463197

RESUMEN

Wound healing is vital for patients with complex wounds including burns. While the gold standard of skin transplantation ensures a surgical treatment to heal wounds, it has its limitations, for example, insufficient donor sites for patients with large burn wounds and creation of wounds and pain when harvesting the donor skin. Therefore, tissue-engineered skin is of paramount importance. The aim of this study is to investigate and characterize an elastomeric acellular scaffold that would demonstrate the ability to promote skin regeneration. A hybrid gelatin-based electrospun scaffold is fabricated via the use of biodegradable polycarbonate polyurethane (PU). It is hypothesized that the addition of PU would enable a tailored degradation rate and an enhanced mechanical strength of electrospun gelatin. Introducing 20% PU to gelatin scaffolds (Gel80-PU20) results in a significant increase in the degradation resistance, yield strength, and elongation of these scaffolds without altering the cell viability. In vivo studies using a mouse excisional wound biopsy grafted with the scaffolds reveals that the Gel80-PU20 scaffold enables greater cell infiltration than clinically established matrices, for example, Integra (dermal regeneration matrix, DRM), a benchmark scaffold. Immunostaining shows fewer macrophages and myofibroblastic cells on the Gel80-PU20 scaffold when compared with the DRM. The findings show that electrospun Gel80-PU20 scaffolds hold potential for generating tissue substitutes and overcoming some limitations of conventional wound care matrices.


Asunto(s)
Gelatina , Poliuretanos , Humanos , Regeneración , Ingeniería de Tejidos , Andamios del Tejido
17.
Biomaterials ; 256: 120183, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622017

RESUMEN

Recently reported biomaterial-based approaches toward prevascularizing tissue constructs rely on biologically or structurally complex scaffolds that are complicated to manufacture and sterilize, and challenging to customize for clinical applications. In the current work, a prevascularization method for soft tissue engineering that uses a non-patterned and non-biological scaffold is proposed. Human fibroblasts and HUVECs were seeded on an ionomeric polyurethane-based hydrogel and cultured for 14 days under medium perfusion. A flow rate of 0.05 mL/min resulted in a greater lumen density in the constructs relative to 0.005 and 0.5 mL/min, indicating the critical importance of flow magnitude in establishing microvessels. Constructs generated at 0.05 mL/min perfusion flow were implanted in a mouse subcutaneous model and intravital imaging was used to characterize host blood perfusion through the construct after 2 weeks. Engineered microvessels were functional (i.e. perfused with host blood and non-leaky) and neovascularization of the construct by host vessels was enhanced relative to non-prevascularized constructs. We report on the first strategy toward engineering functional microvessels in a tissue construct using non-bioactive, non-patterned synthetic polyurethane materials.


Asunto(s)
Poliuretanos , Andamios del Tejido , Microvasos , Neovascularización Fisiológica , Perfusión , Ingeniería de Tejidos
18.
Biomacromolecules ; 10(10): 2729-39, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19754121

RESUMEN

In tissue engineering, the ability to manipulate scaffold design characteristics is important to achieve functional tissue regeneration. In this study, degradable polar hydrophobic ionic polyurethane (D-PHI) porous scaffolds were synthesized using a lysine-based divinyl oligomer (DVO). Optimization studies on the DVO and D-PHI scaffold synthesis were conducted to maximize isocyanate and methacrylate monomer conversion, respectively. D-PHI scaffold properties were manipulated through the introduction of a lysine-based cross-linker. Specifically, increasing D-PHI cross-linker concentration resulted in an increase of the elastic modulus (0.5-21 MPa), a decrease of the elongation-at-yield (45-5%) and a reduction of scaffold swelling (170-100%). Based on a preliminary study with A10 vascular smooth muscle cells, D-PHI scaffolds demonstrated the ability to support cell adhesion and growth during 2 weeks of culture, suggesting their potential suitability for longer term vascular tissue engineering. The versatility of the D-PHI properties may allow for the tailoring of cell-material interaction and ultimately functional tissue regeneration.


Asunto(s)
Vasos Sanguíneos/citología , Poliuretanos/síntesis química , Ingeniería de Tejidos , Animales , Adhesión Celular , Proliferación Celular , Células Cultivadas , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Ratas
19.
Differentiation ; 76(3): 232-44, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17924965

RESUMEN

Monocyte-derived macrophages (MDM) and multinucleated foreign body giant cells (FBGC) are the primary cell types that remain at the cell-material interface of polyurethane (PU)-based medical devices as a result of chronic inflammatory responses. In vitro studies have demonstrated that MDM possess degradative potential toward PU, which can result in device failure. Because most studies have followed the degradation potential, morphology, and function of these cells only once fully differentiated, the current study investigated the influence of a non-degradable control tissue culture-grade polystyrene (TCPS) surface relative to two degradable model polycarbonate-urethanes (PCNU), of different chemistry, on various parameters of MDM morphology and function during a 14-day differentiation time course. The differentiation of human monocytes isolated from whole blood on PCNU materials resulted in increased cell attachment, decreased multinucleation, and significant decreases in cell spreading when compared with cells differentiated on TCPS. Actin-stained podosome-like cell adhesion structures were increased in PCNU-adherent cells, accompanied by an alteration in beta-actin and vinculin protein expression. The expression of the CD68 macrophage marker was reduced when cells were adherent to the PCNU materials and compared with TCPS, suggesting altered cell activation by the degradable relative to non-degradable materials. The degradative potential of these cells was altered by the material surface they were exposed to as measured by esterase activity and protein expression of monocyte-specific esterase. This was also supported by physical material breakdown evident in scanning electron microscopy images that illustrated holes in the PCNU films generated by the presence of differentiating MDM. It was concluded from these studies that PCNU materials significantly alter the function and morphology of differentiating MDM. This must be taken into consideration when studying cell-material interactions because these cells will receive cues from their immediate environment (including the biomaterial) upon differentiation, thereby affecting their resulting phenotype.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Macrófagos/citología , Monocitos/citología , ADN/metabolismo , Humanos , Macrófagos/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Monocitos/ultraestructura
20.
Acta Biomater ; 96: 161-174, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31254683

RESUMEN

Tissue scaffolds need to be engineered to be cell compatible, have timely biodegradable character, be functional with respect to providing niche cell support for tissue repair and regeneration, readily accommodate multiple cell types, and have mechanical properties that enable the simulation of the native tissue. In this study, electrospun degradable polar hydrophobic ionic polyurethane (D-PHI) scaffolds were generated in order to yield an extracellular matrix-like structure for tissue engineering applications. D-PHI oligomers were synthesized, blended with a degradable linear polycarbonate polyurethane (PCNU), and electrospun with simultaneous in situ UV cross-linking in order to generate aligned nanofibrous scaffolds in the form of elastomeric composite materials. The D-PHI/PCNU scaffold fibre morphology, cross-linking efficiency, surface nature, mechanical properties, in vivo degradation and integration, as well as in vitro cell compatibility were characterized. The results showed that D-PHI/PCNU scaffolds had a high cross-linking efficiency, stronger polar nature, and lower stiffness relative to PCNU scaffolds. In vivo, the D-PHI/PCNU scaffold degraded relatively slowly, thereby enabling new tissue time to form and yielding very good integration with the latter tissue. Based on a study with A10 vascular smooth muscle cells, the D-PHI/PCNU scaffold was able to support high cell viability, adhesion, and expression of typical smooth muscle cell markers after a 7-day culture period, which was comparable to PCNU scaffolds. These characterization results demonstrate that the unique properties of a D-PHI/PCNU scaffold, combined with the benefits of electrospinning, could allow for the generation of a tissue engineered scaffold that mimics important aspects of the native extracellular matrix and could be used for functional tissue regeneration. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds should recapitulate native extracellular matrix features. This study investigates the processing of a classical polycarbonate polyurethane (PCNU) with a cross-linked and degradable ionomeric polyurethane (D-PHI), polymerized via in situ rapid light curing to yield a 3-dimensional co-electrospun nanofibre matrix with chemical diversity and low modulus character. This research advances the use of D-PHI for tissue engineering applications by providing a facile means of changing physical and chemical properties in classical PCNUs without the need to adjust spinning viscosities of the base polymer. Further, the in vivo and cell culture findings set the stage for introducing unique elastic materials which inherently support wound healing, repair, and regeneration in tissues, for applications that require the recapitulation of native extracellular matrix physical features.


Asunto(s)
Nanofibras/química , Polimerizacion , Poliuretanos/síntesis química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Adhesión Celular , Supervivencia Celular , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Iones , Ensayo de Materiales , Miocitos del Músculo Liso/metabolismo , Nanofibras/ultraestructura , Cemento de Policarboxilato/química , Poliuretanos/química , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA