Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 290(22): 13654-66, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25833947

RESUMEN

Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn(37) show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Carbohidratos/química , Celulosa/metabolismo , Clostridium cellulolyticum/metabolismo , Clostridium thermocellum/metabolismo , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Concentración 50 Inhibidora , Mutación , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína , Programas Informáticos , Especificidad de la Especie , Especificidad por Sustrato , Termodinámica , Cohesinas
2.
Magn Reson Chem ; 45 Suppl 1: S32-47, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18172904

RESUMEN

Proteins are found to be involved in interaction with solid surfaces in numerous natural events. Acidic proteins that adsorb to crystal faces of a biomineral to control the growth and morphology of hard tissue are only one example. Deducing the mechanisms of surface recognition exercised by proteins has implications to osteogenesis, pathological calcification and other proteins functions at their adsorbed state. Statherin is an enamel pellicle protein that inhibits hydroxyapatite nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. Here, we highlight some of the insights we obtained recently using both thermodynamic and solid state NMR measurements to the adsorption process of statherin to hydroxyapatite. We combine macroscopic energy characterization with microscopic structural findings to present our views of protein adsorption mechanisms and the structural changes accompanying it and discuss the implications of these studies to understanding the functions of the protein adsorbed to the enamel surfaces.


Asunto(s)
Durapatita/química , Proteínas y Péptidos Salivales/química , Adsorción , Adhesión Bacteriana , Calcificación Fisiológica , Cristalización , Película Dental/química , Humanos , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Saliva/química , Coloración y Etiquetado , Propiedades de Superficie , Termodinámica
3.
Proc Natl Acad Sci U S A ; 103(44): 16083-8, 2006 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17060618

RESUMEN

Statherin is an enamel pellicle protein that inhibits hydroxyapatite (HAP) nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. We report here from solid-state NMR measurements that the protein's C-terminal region folds into an alpha-helix upon adsorption to HAP crystals. This region contains the binding sites for bacterial fimbriae that mediate bacterial cell adhesion to the surface of the tooth. The helical segment is shown through long-range distance measurements to fold back onto the intermediate region (residues Y16-P28) defining the global fold of the protein. Statherin, previously shown to be unstructured in solution, undergoes conformation selection on its substrate mineral surface. This surface-induced folding of statherin can be related to its functionality in inhibiting HAP crystal growth and can explain how oral pathogens selectively recognize HAP-bound statherin.


Asunto(s)
Adhesión Bacteriana , Durapatita/química , Pliegue de Proteína , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Adsorción , Algoritmos , Biología Computacional , Cristalización , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas y Péptidos Salivales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA