Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34697239

RESUMEN

Accurate characterization of sexual dimorphism is crucial in evolutionary biology because of its significance in understanding present and past adaptations involving reproductive and resource use strategies of species. However, inferring dimorphism in fossil assemblages is difficult, particularly with relatively low dimorphism. Commonly used methods of estimating dimorphism levels in fossils include the mean method, the binomial dimorphism index, and the coefficient of variation method. These methods have been reported to overestimate low levels of dimorphism, which is problematic when investigating issues such as canine size dimorphism in primates and its relation to reproductive strategies. Here, we introduce the posterior density peak (pdPeak) method that utilizes the Bayesian inference to provide posterior probability densities of dimorphism levels and within-sex variance. The highest posterior density point is termed the pdPeak. We investigated performance of the pdPeak method and made comparisons with the above-mentioned conventional methods via 1) computer-generated samples simulating a range of conditions and 2) application to canine crown-diameter datasets of extant known-sex anthropoids. Results showed that the pdPeak method is capable of unbiased estimates in a broader range of dimorphism levels than the other methods and uniquely provides reliable interval estimates. Although attention is required to its underestimation tendency when some of the distributional assumptions are violated, we demonstrate that the pdPeak method enables a more accurate dimorphism estimate at lower dimorphism levels than previously possible, which is important to illuminating human evolution.


Asunto(s)
Fósiles , Modelos Estadísticos , Caracteres Sexuales , Animales , Teorema de Bayes , Diente Canino , Femenino , Masculino
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34853174

RESUMEN

Body and canine size dimorphism in fossils inform sociobehavioral hypotheses on human evolution and have been of interest since Darwin's famous reflections on the subject. Here, we assemble a large dataset of fossil canines of the human clade, including all available Ardipithecus ramidus fossils recovered from the Middle Awash and Gona research areas in Ethiopia, and systematically examine canine dimorphism through evolutionary time. In particular, we apply a Bayesian probabilistic method that reduces bias when estimating weak and moderate levels of dimorphism. Our results show that Ar. ramidus canine dimorphism was significantly weaker than in the bonobo, the least dimorphic and behaviorally least aggressive among extant great apes. Average male-to-female size ratios of the canine in Ar. ramidus are estimated as 1.06 and 1.13 in the upper and lower canines, respectively, within modern human population ranges of variation. The slightly greater magnitude of canine size dimorphism in the lower than in the upper canines of Ar. ramidus appears to be shared with early Australopithecus, suggesting that male canine reduction was initially more advanced in the behaviorally important upper canine. The available fossil evidence suggests a drastic size reduction of the male canine prior to Ar. ramidus and the earliest known members of the human clade, with little change in canine dimorphism levels thereafter. This evolutionary pattern indicates a profound behavioral shift associated with comparatively weak levels of male aggression early in human evolution, a pattern that was subsequently shared by Australopithecus and Homo.


Asunto(s)
Diente Canino/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Teorema de Bayes , Evolución Biológica , Femenino , Hominidae/clasificación , Humanos , Masculino , Modelos Teóricos , Filogenia , Caracteres Sexuales
3.
J Hum Evol ; 144: 102789, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485477

RESUMEN

The Early Pliocene Sagantole Fm. in the Gona Project area, Afar State, Ethiopia, is noted for discoveries of the early hominin Ardipithecus ramidus. A large series of fossil cercopithecid primates dated to between 4.8 and 4.3 Ma has also been collected from these sediments. In this paper, we use qualitative analysis and standard dental and postcranial measures to systematically describe the craniodental remains and tentatively allocate postcrania to taxa where we are able to. We then use these data to compare these specimens to fossil assemblages from contemporary sites, interpret their paleobiology, and discuss implications for the paleoecology of the Gona Sagantole Fm. We recognize three cercopithecid species in the Gona Sagantole Fm. Pliopapio alemui makes up approximately two-thirds of the identifiable specimens; nearly all of the rest are allocated to Kuseracolobus aramisi, and a single molar indicates the presence of a second, somewhat larger but morphologically distinct papionin. Among the Early Pliocene cercopithecids from Gona are also a number of postcranial elements. None of the postcranial remains are directly associated with any of the cranial material. Nonetheless, some of the distal humeri and proximal femora can be tentatively allocated to either Pl. alemui or K. aramisi based on a combination of size, as the latter is approximately 50% larger than the former, and morphology. If these assignments are correct, they suggest K. aramisi was primarily arboreal and similar to most extant colobines, whereas Pl. alemui was more mixed in its substrate use, being more terrestrially adapted than K. aramisi, but less so than extant Papio or Theropithecus. Thus, we interpret the predominance of Pl. alemui over K. aramisi is consistent with a somewhat more open environment at Gona than at Aramis.


Asunto(s)
Cercopithecidae/anatomía & histología , Cercopithecidae/fisiología , Fósiles/anatomía & histología , Rasgos de la Historia de Vida , Animales , Etiopía , Femenino , Masculino
4.
J Hum Evol ; 81: 68-82, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25795338

RESUMEN

Since 2000, significant collections of Latest Miocene hominin fossils have been recovered from Chad, Kenya, and Ethiopia. These fossils have provided a better understanding of earliest hominin biology and context. Here, we describe five hominin teeth from two periods (ca. 5.4 Million-years-ago and ca. 6.3 Ma) that were recovered from the Adu-Asa Formation in the Gona Paleoanthropological Research Project area in the Afar, Ethiopia that we assign to either Hominina, gen. et sp. indet. or Ardipithecus kadabba. These specimens are compared with extant African ape and other Latest Miocene and Early Pliocene hominin teeth. The derived morphology of the large, non-sectorial maxillary canine and mandibular third premolar links them with later hominins and they are phenetically distinguishable and thus phyletically distinct from extant apes.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Diente/anatomía & histología , Animales , Evolución Biológica , Etiopía
5.
Nature ; 433(7023): 301-5, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15662421

RESUMEN

Comparative biomolecular studies suggest that the last common ancestor of humans and chimpanzees, our closest living relatives, lived during the Late Miocene-Early Pliocene. Fossil evidence of Late Miocene-Early Pliocene hominid evolution is rare and limited to a few sites in Ethiopia, Kenya and Chad. Here we report new Early Pliocene hominid discoveries and their palaeoenvironmental context from the fossiliferous deposits of As Duma, Gona Western Margin (GWM), Afar, Ethiopia. The hominid dental anatomy (occlusal enamel thickness, absolute and relative size of the first and second lower molar crowns, and premolar crown and radicular anatomy) indicates attribution to Ardipithecus ramidus. The combined radioisotopic and palaeomagnetic data suggest an age of between 4.51 and 4.32 million years for the hominid finds at As Duma. Diverse sources of data (sedimentology, faunal composition, ecomorphological variables and stable carbon isotopic evidence from the palaeosols and fossil tooth enamel) indicate that the Early Pliocene As Duma sediments sample a moderate rainfall woodland and woodland/grassland.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Animales , Esmalte Dental/química , Ambiente , Etiopía , Historia Antigua , Maxilares/anatomía & histología , Poaceae , Lluvia , Factores de Tiempo , Diente/anatomía & histología , Diente/química , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA