Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 11(10): 3484-91, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25179345

RESUMEN

Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1ß and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1ß, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80(+) macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Interleucina-12/uso terapéutico , Lípido A/análogos & derivados , Liposomas/química , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Interferón gamma/metabolismo , Interleucina-12/química , Interleucina-1beta/metabolismo , Lípido A/química , Lípido A/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Biomed Nanotechnol ; 12(1): 154-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27301181

RESUMEN

Functionalization of nanoparticles with cationic moieties, such as polyethyleneimine (PEI), enhances binding to the cell membrane; however, it also disrupts the integrity of the cell's plasma and vesicular membranes, leading to cell death. Primary fibroblasts were found to display high surface affinity for cationic iron oxide nanoparticles and greater sensitivity than their immortalized counterparts. Treatment of cells with cationic nanoparticles in the presence of incremental increases in serum led to a corresponding linear decrease in cell death. The surface potential of the nanoparticles also decreased linearly as serum increased and this was strongly and inversely correlated with cell death. While low doses of nanoparticles were rendered non-toxic in 25% serum, large doses overcame the toxic threshold. Serum did not reduce nanoparticle association with primary fibroblasts, indicating that the decrease in nanoparticle cytotoxicity was based on serum masking of the PEI surface, rather than decreased exposure. Primary endothelial cells were likewise more sensitive to the cytotoxic effects of cationic nanoparticles than their immortalized counterparts, and this held true for cellular responses to cationic microparticles despite the much lower toxicity of microparticles compared to nanoparticles.


Asunto(s)
Apoptosis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Nanocápsulas/química , Nanocápsulas/toxicidad , Polietileneimina/toxicidad , Suero/química , Animales , Apoptosis/fisiología , Cationes , Línea Celular , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/toxicidad , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Ratones , Polietileneimina/química , Electricidad Estática , Propiedades de Superficie
3.
Eur J Heart Fail ; 18(2): 169-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26749465

RESUMEN

AIMS: Ongoing inflammation and endothelial dysfunction occurs within the local microenvironment of heart failure, creating an appropriate scenario for successful use and delivery of nanovectors. This study sought to investigate whether cardiovascular cells associate, internalize, and traffic a nanoplatform called mesoporous silicon vector (MSV), and determine its intravenous accumulation in cardiac tissue in a murine model of heart failure. METHODS AND RESULTS: In vitro cellular uptake and intracellular trafficking of MSVs was examined by scanning electron microscopy, confocal microscopy, time-lapse microscopy, and flow cytometry in cardiac myocytes, fibroblasts, smooth muscle cells, and endothelial cells. The MSVs were internalized within the first hours, and trafficked to perinuclear regions in all the cell lines. Cytotoxicity was investigated by annexin V and cell cycle assays. No significant evidence of toxicity was found. In vivo intravenous cardiac accumulation of MSVs was examined by high content fluorescence and confocal microscopy, with results showing increased accumulation of particles in failing hearts compared with normal hearts. Similar to observations in vitro, MSVs were able to associate, internalize, and traffic to the perinuclear region of cardiomyocytes in vivo. CONCLUSIONS: Results show that MSVs associate, internalize, and traffic in cardiovascular cells without any significant toxicity. Furthermore, MSVs accumulate in failing myocardium after intravenous administration, reaching intracellular regions of the cardiomyocytes. These findings represent a novel avenue to develop nanotechnology-based therapeutics and diagnostics in heart failure.


Asunto(s)
Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Corazón/fisiología , Corazón/fisiopatología , Miocitos Cardíacos/fisiología , Nanoestructuras/uso terapéutico , Animales , Materiales Biocompatibles , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio , Polímeros , Silicio
4.
Curr Drug Targets ; 16(13): 1531-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26201489

RESUMEN

Acute lung injury (ALI) and its most severe manifestation, acute respiratory distress syndrome (ARDS), is a clinical syndrome defined by acute hypoxemic respiratory failure and bilateral pulmonary infiltrates consistent with edema. In-hospital mortality is 38.5% for AL, and 41.1% for ARDS. Activation of alveolar macrophages in the donor lung causes the release of pro-inflammatory chemokines and cytokines, such as TNF-α. To determine the relevance of TNF-α in disrupting bronchial endothelial cell function, we stimulated human THP-1 macrophages with lipopolysaccharide (LPS) and used the resulting cytokine-supplemented media to disrupt normal endothelial cell functions. Endothelial tube formation was disrupted in the presence of LPS-activated THP- 1 conditioned media, with reversal of the effect occurring in the presence of 0.1µg/ml Enbrel, indicating that TNF-α was the major serum component inhibiting endothelial tube formation. To facilitate lung conditioning, we tested liposomal and porous silicon (pSi) delivery systems for their ability to selectively silence TNFR1 using siRNA technology. Of the three types of liposomes tested, only cationic liposomes had substantial endothelial uptake, with human cells taking up 10-fold more liposomes than their pig counterparts; however, non-specific cellular activation prohibited their use as immunosuppressive agents. On the other hand, pSi microparticles enabled the accumulation of large amounts of siRNA in endothelial cells compared to standard transfection with Lipofectamine(®) LTX, in the absence of non-specific activation of endothelia. Silencing of TNFR1 decreased TNF-α mediated inhibition of endothelial tube formation, as well as TNF-α-induced upregulation of ICAM-1, VCAM, and E-selection in human lung microvascular endothelial cells.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , ARN Interferente Pequeño/administración & dosificación , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Síndrome de Dificultad Respiratoria/fisiopatología , Animales , Cationes/metabolismo , Citocinas/metabolismo , Selectina E/genética , Células Endoteliales/metabolismo , Silenciador del Gen , Humanos , Molécula 1 de Adhesión Intercelular/genética , Lipopolisacáridos/farmacología , Liposomas , Macrófagos/metabolismo , Microvasos/citología , Microvasos/metabolismo , Especificidad de la Especie , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/genética , Molécula 1 de Adhesión Celular Vascular/genética
5.
PLoS One ; 9(4): e94703, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736547

RESUMEN

Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1ß levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophages.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Lípido A/análogos & derivados , Silicio/química , Células TH1/citología , Células TH1/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Transporte Biológico , Células de la Médula Ósea/citología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Lípido A/química , Lípido A/inmunología , Liposomas , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Microesferas , Nanopartículas , Tamaño de la Partícula , Porosidad , Silicio/metabolismo , Células TH1/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
6.
Int J Nanomedicine ; 8: 629-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23413209

RESUMEN

Heart disease remains the major cause of death in males and females, emphasizing the need for novel strategies to improve patient treatment and survival. A therapeutic approach, still in its infancy, is the development of site-specific drug-delivery systems. Nanoparticle-based delivery systems, such as liposomes, have evolved into robust platforms for site-specific delivery of therapeutics. In this review, the clinical impact of cardiovascular disease and the pathophysiology of different subsets of the disease are described. Potential pathological targets for therapy are introduced, and promising advances in nanotherapeutic cardiovascular applications involving liposomal platforms are presented.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Portadores de Fármacos/administración & dosificación , Liposomas/administración & dosificación , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Femenino , Humanos , Masculino
7.
J Biomed Mater Res A ; 94(4): 1236-43, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20694990

RESUMEN

Injectable and implantable porosified silicon (pSi) carriers and devices for prolonged and controlled delivery of biotherapeutics offer great promise for treatment of various chronic ailments and acute conditions. Polyethylene glycols (PEGs) are important surface modifiers currently used in clinic mostly to avoid uptake of particulates by reticulo-endothelial system (RES). In this work we show for the first time that covalent attachment of PEGs to the pSi surface can be used as a means to tune degradation kinetics of silicon structures. Seven PEGs with varying molecular weights (245, 333, 509, 686, 1214, 3400, and 5000 Da) were employed and the degradation of PEGylated pSi hemispherical microparticles in simulated physiological conditions was monitored by means of ICP-AES, SEM, and fluorimetry. Biocompatibility of the systems with human macrophages in vitro was also evaluated. The results clearly indicate that controlled PEGylation of silicon microparticles can offer a sensitive tool to finely tune their degradation kinetics and that the systems do not induce release of proinflammatory cytokines IL-6 and IL-8 in THP1 human macrophages.


Asunto(s)
Polietilenglicoles/química , Silicio/química , Línea Celular , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Interleucina-8/metabolismo , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Porosidad/efectos de los fármacos , Silicio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA