Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biologicals ; 53: 51-62, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29503205

RESUMEN

The aim of this study was to synthesize and characterize novel three-dimensional porous scaffolds made of poly (lactic-co-glycolic acid)/TiO2 nanotube (TNT) composite microspheres for bone tissue engineering applications. The incorporation of TNT greatly increases mechanical properties of PLGA/TNT microsphere-sintered scaffold. The experimental results exhibit that the PLGA/0.5 wt% TNT scaffold sintered at 100 °C for 3 h showed the best mechanical properties and a proper pore structure for tissue engineering. Biodegradation test ascertained that the weight of both PLGA and PLGA/PLGA/0.5 wt% TiO2 nanotube composites slightly reduced during the first 4 weeks following immersion in SBF solution. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and alkaline phosphatase activity (ALP activity) results represent increased cell viability for PLGA/0.5%TNT composite scaffold in comparison to the control group. In vivo studies show the amount of bone formation for PLGA/TNT was approximately twice of pure PLGA. Vivid histologic images of the newly generated bone on the implants further supported our test results. Eventually, a mathematical model showed that both PLGA and PLGA/TNT scaffolds' mechanical properties follow an exponential trend with time as their degradation occurs. By a three-dimensional finite element model, a more monotonous distribution of stress was present in the scaffold due to the presence of TNT with a reduction in maximum stress on bone.


Asunto(s)
Sustitutos de Huesos , Huesos/metabolismo , Ácido Láctico , Ensayo de Materiales , Ácido Poliglicólico , Ingeniería de Tejidos , Andamios del Tejido/química , Titanio , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Huesos/patología , Ácido Láctico/química , Ácido Láctico/farmacología , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Conejos , Titanio/química , Titanio/farmacología
2.
J Endod ; 48(6): 741-748, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35245579

RESUMEN

INTRODUCTION: A 3-dimensional (3D) tissue construct with a heterogeneous cell population is critical to understand the interactions between immune cells and stem cells from the apical papilla (SCAPs) in the periapical region for developing treatment strategies in regenerative endodontics. This study aimed to develop and characterize a 3D tissue construct with a binary cell system for studying the interactions between SCAPs and macrophages in the presence of lipopolysaccharide (proinflammatory) and interleukin 4 (anti-inflammatory) environments. METHODS: SCAPs and macrophages were seeded in the 3D-printed dumbbell-shaped molds to generate tissue constructs with a binary cell population. Two experimental (lipopolysaccharide and interleukin 4) and control (non-stimulation) conditions were applied to the tissue constructs to determine the characteristics of the tissue construct, the volume of viable cells, and their morphology using confocal laser scanning microscopy from a 0- to 7-day period. Experiments were conducted in triplicate, and data were analyzed with trend analysis and 2-way analysis of variance at a significance of P < .05. RESULTS: The tissue constructs revealed distinct SCAP-macrophage interaction in pro/anti-inflammatory environments. SCAPs displayed characteristic self-organization as a cap-shaped structure in the tissue construct. The growth of cells and cell-to-cell and cell-to-matrix interactions resulted in 70% and 30% decreased dimension of the tissue graft on the SCAP side and macrophage side, respectively, at day 7 (P < .0001). The tissue environments influenced SCAP-macrophage interactions, resulting in an altered viable cell volume (P < .05), morphology, and structural organization. CONCLUSIONS: This study developed and characterized an apical papilla organoid in a 3D collagen-based tissue construct for studying SCAP-macrophage crosstalk in tissue regeneration as well as repair.


Asunto(s)
Papila Dental , Endodoncia Regenerativa , Antiinflamatorios/farmacología , Diferenciación Celular , Células Cultivadas , Interleucina-4 , Lipopolisacáridos/farmacología , Macrófagos , Organoides , Células Madre/fisiología
3.
Biofabrication ; 11(3): 035002, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30769331

RESUMEN

Bioprinting is rapidly developing into a powerful tool in tissue engineering, for both organ printing and the development of in vitro models that can be used in drug discovery, toxicology and in vitro bioreactors. Nevertheless, the ability to create complex 3D culture systems with different types of cells and extracellular matrices integrated with perfusable channels has been a challenge. Here we develop an approach that combines the xurography of a scaffold material (cellulose) with extrusion printing of bioinks onto it, followed by assembly in a layer-by-layer fashion to create complex 3D culture systems that could be used as in vitro models of biological processes. This new method, termed ExCeL, can recapitulate the complexities of natural tissues with a proper 3D distribution of cells, extracellular matrices, and different molecules, while providing the whole structure with mechanical stability, and direct and easy access to the cells, even the ones that are positioned deep in the bulk of the structure, without the need to fix or section the samples. Briefly, the bioprinting of predefined patterns with a feature size of ∼1 mm has been made possible by treating paper with the hydrogel's crosslinker and printing cell-embedded hydrogel that will solidify immediately upon contact with the paper. These impregnated layers can be used as single layers or in a layer-by-layer approach by stacking them (here up to four layers) for applications such as cell migration and proliferation in 3D structures composed of collagen or alginate. Cells are generally sensitive to the amount of FBS in their culture media and we have shown how FBS amount will effect cell migration. By cutting the paper in certain patterns, printing hydrogel on the remaining parts of it, and stacking the paper in layers, features like embedded channels are formed that will provide cells will better mass transfer in thick structures. This technique provides biologists with a unique tool to perform sophisticated in vitro assays.


Asunto(s)
Bioimpresión/métodos , Celulosa/química , Modelos Biológicos , Andamios del Tejido/química , Células 3T3 , Animales , Calcio/análisis , Movimiento Celular , Supervivencia Celular , Colágeno Tipo I/farmacología , Fibroblastos/citología , Fluorescencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Impresión Tridimensional
4.
Mater Sci Eng C Mater Biol Appl ; 90: 280-288, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29853093

RESUMEN

Microsphere sintering method was used to fabricate bone tissue engineering scaffolds made of polycaprolactone (PCL)/bioactive glass 58S5Z (58S modified with 5 wt% Zinc). First, the effect of PCL/58S5Z ratio on the mechanical properties (elastic modulus and yield strength) was investigated. It was found that samples with 5 wt% 58S5Z (named 5%BG) had the highest elastic modulus and yield strength among all samples, i.e., with 0, 5, 10, and 20 wt% bioactive glass. Then, considering the importance of viscoelastic properties of bone, the viscoelastic behavior of 0%BG (scaffold with only PCL) and 5%BG samples was determined by performing compressive stress relaxation test and subsequently a Generalized Maxwell model was developed. Findings indicated a similar amount and pattern of predicted storage and loss moduli and loss factor of the composite scaffolds to those of the bone. In the next step, the analysis of biological behavior of the scaffolds using MTT assay, DAPI and Alizarin red staining demonstrated that 5%BG scaffolds had higher in vitro cell viability and bone formation compared to 0%BG ones. Furthermore, in vivo study employing H&E staining of the scaffolds implanted in rats' calvarium for 50 days, confirmed the earlier findings and showed that 5%BG-filled defects had higher and more uniform bone formation compared to both 0%BG-filled and empty defects.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Poliésteres/química , Andamios del Tejido/química , Huesos/citología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA