Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharm ; 18(1): 18-32, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331774

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufacturing process, and post-treatments. Since the drug release kinetics have not been explainable using the measurable properties, formulating PLGA microparticles with desired drug release kinetics has been extremely difficult. Of the various properties, the glass transition temperature, Tg, of PLGA formulations is able to explain various aspects of drug release kinetics. This allows examination of parameters that affect the Tg of PLGA formulations, and thus, affecting the drug release kinetics. The impacts of the terminal sterilization on the Tg and drug release kinetics were also examined. The analysis of drug release kinetics in relation to the Tg of PLGA formulations provides a basis for further understanding of the factors controlling drug release.


Asunto(s)
Vidrio/química , Microplásticos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Cinética , Tamaño de la Partícula , Temperatura de Transición
2.
Pharm Res ; 38(7): 1221-1234, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34114163

RESUMEN

PURPOSE: Opioids have been the main factor for drug overdose deaths in the United States. Current naloxone delivery systems are effective in mitigating the opioid effects only for hours. Naloxone-loaded poly(lactide-co-glycolide) (PLGA) microparticles were prepared as quick- and long-acting naloxone delivery systems to extend the naloxone effect as an opioid antidote. METHODS: The naloxone-PLGA microparticles were made using an emulsification solvent extraction approach with different formulation and processing parameters. Two PLGA polymers with the lactide:glycolide (L:G) ratios of 50:50 and 75:25 were used, and the drug loading was varied from 21% to 51%. Two different microparticles of different sizes with the average diameters of 23 µm and 50 µm were produced using two homogenization-sieving conditions. All the microparticles were critically characterized, and three of them were evaluated with ß-arrestin recruitment assays. RESULTS: The naloxone encapsulation efficiency (EE) was in the range of 70-85%. The EE was enhanced when the theoretical naloxone loading was increased from 30% to 60%, the L:G ratio was changed from 50:50 to 75:25, and the average size of the particles was reduced from 50 µm to 23 µm. The in vitro naloxone release duration ranged from 4 to 35 days. Reducing the average size of the microparticles from 50 µm to 23 µm helped eliminate the lag phase and obtain the steady-state drug release profile. The cellular pharmacodynamics of three selected formulations were evaluated by applying DAMGO, a synthetic opioid peptide agonist to a µ-opioid receptor, to recruit ß-arrestin 2. CONCLUSIONS: Naloxone released from the three selected formulations could inhibit DAMGO-induced ß-arrestin 2 recruitment. This indicates that the proposed naloxone delivery system is adequate for opioid reversal during the naloxone release duration.


Asunto(s)
Portadores de Fármacos/química , Naloxona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Sobredosis de Opiáceos/tratamiento farmacológico , Animales , Células CHO , Cricetulus , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Humanos , Microesferas , Naloxona/farmacocinética , Antagonistas de Narcóticos/farmacocinética , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Propiedades de Superficie , Factores de Tiempo
3.
Biomacromolecules ; 17(10): 3287-3297, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27598294

RESUMEN

Fibrous scaffolds have shown promise in tissue engineering due to their ability to improve cell alignment and migration. In this paper, poly(ε-caprolactone) (PCL) fibers are fabricated in different sizes using a microfluidic platform. By using this approach, we demonstrated considerable flexibility in ability to control the size of the fibers. It was shown that the average diameter of the fibers was obtained in the range of 2.6-36.5 µm by selecting the PCL solution flow rate from 1 to 5 µL min-1 and the sheath flow rate from 20 to 400 µL min-1 in the microfluidic channel. The microfibers were used to create 3D microenvironments in order to investigate growth and differentiation of adult hippocampal stem/progenitor cells (AHPCs) in vitro. The results indicated that the 3D topography of the PCL substrates, along with chemical (extracellular matrix) guidance cues supported the adhesion, survival, and differentiation of the AHPCs. Additionally, it was found that the cell deviation angle for 44-66% of cells on different types of fibers was less than 10°. This reveals the functionality of PCL fibrous scaffolds for cell alignment important in applications such as reconnecting serious nerve injuries and guiding the direction of axon growth as well as regenerating blood vessels, tendons, and muscle tissue.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Ingeniería de Tejidos , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Humanos , Dispositivos Laboratorio en un Chip , Músculos/efectos de los fármacos , Nanofibras/química , Nanofibras/uso terapéutico , Poliésteres/química , Poliésteres/uso terapéutico , Tendones/efectos de los fármacos , Tendones/crecimiento & desarrollo , Andamios del Tejido/química
4.
Adv Healthc Mater ; 11(7): e2101427, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34601826

RESUMEN

Poly(lactide-co-glycolide) (PLGA) has been extensively used in making long-acting injectable formulations. The critical factors affecting the PLGA formulation properties have been adjusted to control the drug release kinetics and obtain desirable properties of PLGA-based drug delivery systems. The PLGA microparticle formation begins as soon as the drug/PLGA-dissolved in the organic solvent phase (oil phase) is exposed to the water phase. The initial skin (or shell) formation on the oil droplets occurs very quickly, sometimes in the matter of milliseconds, and studying the process has been difficult. The skin formation on the PLGA emulsion droplet surface that can affect the subsequent hardening steps is examined. PLGA droplets with different compositions are prepared. Using collimated light and a high-speed camera made it possible to detect the diffusion of acetonitrile from the oil phase into the water phase during the oil droplet formation. Although the skin formation is not visible on the surface of the oil phase droplet with the current setup, the droplet shapes, solid strand formation, and the difference in the spreading time suggest that the initial contact time between the oil and water phases in the range of a few seconds is critical to the properties of the skin.


Asunto(s)
Ácido Poliglicólico , Liberación de Fármacos , Emulsiones , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
5.
J Control Release ; 329: 1150-1161, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33148404

RESUMEN

Injectable long-acting formulations, specifically poly(lactide-co-glycolide) (PLGA) based systems, have been used to deliver drugs systemically for up to 6 months. Despite the benefits of using this type of long-acting formulations, the development of clinical products and the generic versions of existing formulations has been slow. Only about two dozen formulations have been approved by the U.S. Food and Drug Administration during the last 30 years. Furthermore, less than a dozen small molecules have been incorporated and approved for clinical use in PLGA-based formulations. The limited number of clinically used products is mainly due to the incomplete understanding of PLGA polymers and the various variables involved in the composition and manufacturing process. Numerous process parameters affect the formulation properties, and their intricate interactions have been difficult to decipher. Thus, it is necessary to identify all the factors affecting the final formulation properties and determine the main contributors to enable control of each factor independently. The composition of the formulation and the manufacturing processes determine the essential property of each formulation, i.e., in vivo drug release kinetics leading to their respective pharmacokinetic profiles. Since the pharmacokinetic profiles can be correlated with in vitro release kinetics, proper in vitro characterization is critical for both batch-to-batch quality control and scale-up production. In addition to in vitro release kinetics, other in vitro characterization is essential for ensuring that the desired formulation is produced, resulting in an expected pharmacokinetic profile. This article reviews the effects of a selected number of parameters in the formulation composition, manufacturing process, and characterization of microparticle systems. In particular, the emphasis is focused on the characterization of surface morphology of PLGA microparticles, as it is a manifestation of the formulation composition and the manufacturing process. Also, the implication of the surface morphology on the drug release kinetics is examined. The information described here can also be applied to in situ forming implants and solid implants.


Asunto(s)
Preparaciones Farmacéuticas , Poliglactina 910 , Liberación de Fármacos , Tamaño de la Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
6.
Colloids Surf B Biointerfaces ; 196: 111300, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919245

RESUMEN

Many types of long-acting injectables, including in situ forming implants, preformed implants, and polymeric microparticles, have been developed and ultimately benefited numerous patients. The advantages of using long-acting injectables include greater patient compliance and more steady state drug plasma levels for weeks and months. However, the development of long-acting polymeric microparticles has been hampered by the lack of understanding of the microparticle formation process, and thus, control of the process. Of the many parameters critical to the reproducible preparation of microparticles, the interfacial tension (IFT) effect is an important factor throughout the process. It may influence the droplet formation, solvent extraction, and drug distribution in the polymer matrix, and ultimately drug release kinetics from the microparticles. This mini-review is focused on the IFT effects on drug-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Liberación de Fármacos , Humanos , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tensión Superficial
7.
J Control Release ; 325: 347-358, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32645336

RESUMEN

Injectable, long-acting drug delivery systems provide effective drug concentrations in the blood for up to 6 months. Naltrexone-loaded poly(lactide-co-glycolide) (PLGA) microparticles were prepared using an in-line homogenization method. It allows the transition from a laboratory scale to scale-up production. This research was designed to understand how the processing parameters affect the properties of the microparticles, such as microparticle size distributions, surface and internal morphologies, drug loadings, and drug release kinetics, and thus, to control them. The in-line homogenization system was used at high flow rates for the oil- and water-phases, e.g., 100 mL/min and 400 mL/min, respectively, to continuously generate microparticles. A high molecular weight (148 kDa) PLGA at various concentrations was used to generate oil-phases with a range of viscosities and also to compare with a 64 and 79 kDa at a single, high concentration. The uniformity of the microparticles was found to be related to the viscosity of the oil-phase. As the viscosity of the oil-phase increased from 52.6 mPa∙s to 4046 mPa∙s, the span value (a measure of uniformity) increased from 1.24 to 3.1 for the microparticles generated at the homogenization speed of 2000 RPM. Increasing the PLGA concentration from 5.58% to 16.85% showed a corresponding rise in the encapsulation efficiency from 74.0% to 85.8% and drug loading (DL) from 27.4% to 31.7% for the microparticles made with the homogenization speed of 2000 RPM. These increases may be due to a faster shell formulation, enabling PLGA microparticles to entrap more naltrexone into the structure. A higher DL, however, shortened the drug release duration from 56 to 42 days. The changes in morphology of the microparticles during different phases of the in vitro release study were also studied for three types of microparticles made with different PLGA concentrations and molecular weights. As PLGA microparticles went through structural changes, the surface showed raisin-like wrinkled morphologies within the first 10 days. Then, the microparticles swelled to form smooth surfaces. The in-line approach produced PLGA microparticles with a highly reproducible size distribution, DL, and naltrexone release rate.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Microesferas , Naltrexona , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
8.
Macromol Biosci ; 19(2): e1800236, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480879

RESUMEN

Biomaterials are essential for the development of innovative biomedical and therapeutic applications. Biomaterials-based scaffolds can influence directed cell differentiation to improve cell-based strategies. Using a novel microfluidics approach, poly (ε-caprolactone) (PCL), is used to fabricate microfibers with varying diameters (3-40 µm) and topographies (straight and wavy). Multipotent adult rat hippocampal stem/progenitor cells (AHPCs) are cultured on 3D aligned PCL microfibrous scaffolds to investigate their ability to differentiate into neurons, astrocytes, and oligodendrocytes. The results indicate that the PCL microfibers significantly enhance proliferation of the AHPCs compared to control, 2D planar substrates. While the AHPCs maintained their multipotent differentiation capacity when cultured on the PCL scaffolds, there is a significant and dramatic increase in immunolabeling for astrocyte and oligodendrocyte differentiation when compared with growth on planar surfaces. Our results show a 3.5-fold increase in proliferation and 23.4-fold increase in astrocyte differentiation for cells on microfibers. Transplantation of neural stem/progenitor cells within a PCL microfiber scaffold may provide important biological and topographic cues that facilitate the survival, selective differentiation, and integration of transplanted cells to improve therapeutic strategies.


Asunto(s)
Células Madre Adultas/citología , Astrocitos/citología , Células-Madre Neurales/citología , Neuronas/citología , Oligodendroglía/citología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Lesiones Encefálicas/terapia , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Hipocampo/citología , Metacrilatos/química , Microfluídica/métodos , Enfermedades Neurodegenerativas/terapia , Neurogénesis/fisiología , Poliésteres/química , Ratas , Andamios del Tejido/química
9.
Macromol Biosci ; 17(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148617

RESUMEN

Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Nanofibras/química , Polímeros/química , Administración Tópica , Animales , Adhesión Celular , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inyecciones Subcutáneas , Microfluídica/métodos , Polielectrolitos/química , Propiedades de Superficie , Industria Textil/métodos , Andamios del Tejido/química
10.
J Mech Behav Biomed Mater ; 61: 530-540, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27136089

RESUMEN

Microfibers are becoming increasingly important for biomedical applications such as regenerative medicine and tissue engineering. We have used a microfluidic approach to create polycaprolactone (PCL) microfibers in a controlled manner. Through the variations of the sheath fluid flow rate and PCL concentration in the core solution, the morphology of the microfibers and their cross-sections can be tuned. The microfibers were made using PCL concentrations of 2%, 5%, and 8% in the core fluid with a wide range of sheath-to-core flow rate ratios from 120:5µL/min to 10:5µL/min, respectively. The results revealed that the mechanical properties of the PCL microfibers made using microfluidic approach were significantly improved compared to the PCL microfibers made by other fiber fabrication methods. Additionally, it was demonstrated that by decreasing the flow rate ratio and increasing the PCL concentration, the size of the microfiber could be increased. Varying the sheath-to-core flow rate ratios from 40:5 to 10:5, the tensile stress at break, the tensile strain at break, and the Young׳s modulus were enhanced from 24.51MPa to 77.07MPa, 567% to 1420%, and 247.25MPa to 539.70MPa, respectively. The porosity and roughness of microfiber decreased when the PCL concentration increased from 2% to 8%, whereas changing the flow rate ratio did not have considerable impact on the microfiber roughness.


Asunto(s)
Microfluídica/métodos , Poliésteres/química , Ingeniería de Tejidos , Fenómenos Biomecánicos , Módulo de Elasticidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA