Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 19(2): e1011132, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745686

RESUMEN

Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication. SVV infection caused the opening of mitochondrial permeability transition pore (mPTP) and led to voltage-dependent anion channel 1 (VDAC1)- and BCL2 antagonist/killer 1 (Bak) and Bak/BCL2-associated X (Bax)-dependent mtDNA leakage into the cytoplasm, while EV-A71 and FMDV infection induced mPTP opening and resulted in VDAC1-dependent mtDNA release. The released mtDNA bound to cGAS and activated cGAS-mediated antiviral immune response. cGAS was essential for inhibiting EV-A71, SVV, and FMDV replication by regulation of IFN-ß production. cGAS deficiency contributed to higher mortality of EV-A71- or FMDV-infected mice. In addition, we found that SVV 2C protein was responsible for decreasing cGAS expression through the autophagy pathway. The 9th and 153rd amino acid sites in 2C were critical for induction of cGAS degradation. Furthermore, we also show that EV-A71, CA16, and EMCV 2C antagonize the cGAS-stimulator of interferon genes (STING) pathway through interaction with STING, and highly conserved amino acids Y155 and S156 were critical for this inhibitory effect. In conclusion, these data reveal novel mechanisms of picornaviruses to block the antiviral effect mediated by the cGAS-STING signaling pathway, which will provide insights for developing antiviral strategies against picornaviruses.


Asunto(s)
Virus de la Fiebre Aftosa , Infecciones por Picornaviridae , Animales , Ratones , Antivirales/metabolismo , ADN Mitocondrial/genética , Virus de la Fiebre Aftosa/genética , Inmunidad Innata , Interferón beta/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/metabolismo , Infecciones por Picornaviridae/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
BMC Vet Res ; 17(1): 63, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526020

RESUMEN

BACKGROUND: Foot-and-mouth disease (FMD) is a highly infectious viral disease, recognised to affect animals in the order Artiodactyla. The disease is rarely fatal in adult animals, however high mortality is associated with neonatal and juvenile infection. CASE PRESENTATION: Five puppies died after being fed lamb carcases, the lambs having died during an outbreak of FMD in Iran. Following a post-mortem examination, cardiac tissue from one of the dead puppies was subjected to virus isolation, antigen ELISA, real-time RT-PCR, sequencing and confocal microscopy to assess the presence and characteristics of any FMD virus. The virological and microscopic examination of the cardiac tissue provided evidence of FMD virus replication in the canine heart. CONCLUSIONS: The data generated in this study demonstrate for the first time that FMD virus can internalise and replicate in dogs and may represent an epidemiologically significant event in FMD transmission, highlighting the dangers of feeding diseased animal carcases to other species. The reporting of this finding may also focus attention on similar disease presentations in dogs in FMD endemic countries allowing a better understanding of the prevalence of such events.


Asunto(s)
Enfermedades de los Perros/virología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Animales , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Perros , Fiebre Aftosa/epidemiología , Fiebre Aftosa/transmisión , Corazón/virología , Irán/epidemiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virología , Carne Roja/virología , Ovinos , Replicación Viral
3.
Front Microbiol ; 15: 1429288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188314

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals responsible for economic losses that amount to >$20 billion annually. Rapid recognition of FMD cases provides vital information to guide control programmes. A range of point-of-need amplification technologies have been developed which allow sensitive detection of the causative virus (FMDV) in the field at locations remote from laboratories. Here we describe a novel system to detect FMDV RNA using loop-mediated isothermal amplification (LAMP). This test was evaluated using a panel of FMDV isolates (n = 79) and RNA standards demonstrating capability to amplify viral genome directly from clinical material in the absence of nucleic acid extraction. This extraction-free RT-LAMP assay was transferred to a bespoke closed-system lateral flow test (LFT) that was used in combination with a low-cost hand-held heater. Our results show that the RT-LAMP-LFT assay retains a high level of diagnostic and analytical sensitivity when using direct clinical material, with a limit of detection under 80 copies per reaction. Together, our data support the potential for the use of this assay at the point-of-need to facilitate rapid feedback on the status of suspect cases.

4.
Viruses ; 14(4)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35458444

RESUMEN

Foot-and-mouth disease (FMD) is a disease of cloven-hoofed livestock caused by FMD virus (FMDV). FMD can be controlled through the use of inactivated vaccines, and it is well established that the protection afforded by FMD vaccines correlates strongly with neutralising antibody titres. However, the overall strength of binding, referred to as avidity, is also an important parameter with respect to the ability of antibodies to neutralise virus infection, and there is evidence that avidity can affect the level of protection afforded by FMDV vaccines. Here, as an alternative to modified enzyme-linked immunosorbent assays (avidity ELISAs) incorporating a chaotropic wash step, we used bio-layer interferometry (BLI) to measure the avidity of bovine polyclonal antibodies against FMDV capsids. We conducted preliminary experiments using recombinant FMDV capsids, as well as peptides representing antigenic loops, to demonstrate that the binding of monoclonal antibodies targeting specific antigenic sites could be detected using BLI. Subsequent experiments using polyclonal sera derived from FMD vaccinated cattle provided evidence of a positive correlation between the neutralising titre of the serum and the avidity as measured by BLI. Furthermore, we observed an increase in BLI avidity, as well as in the titre, in vaccinated animals upon challenge with the live virus.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Anticuerpos Antivirales , Bovinos , Ensayo de Inmunoadsorción Enzimática/métodos , Interferometría
5.
Transbound Emerg Dis ; 69(5): e2230-e2239, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35435315

RESUMEN

Foot-and-mouth disease (FMD) affects the livestock industry and socioeconomic sustainability of many African countries. The success of FMD control programs in Africa depends largely on understanding the dynamics of FMD virus (FMDV) spread. In light of the recent outbreaks of FMD that affected the North-Western African countries in 2018 and 2019, we investigated the evolutionary phylodynamics of the causative serotype O viral strains all belonging to the East-Africa 3 topotype (O/EA-3). We analyzed a total of 489 sequences encoding the FMDV VP1 genome region generated from samples collected from 25 African and Western Asian countries between 1974 and 2019. Using Bayesian evolutionary models on genomic and epidemiological data, we inferred the routes of introduction and migration of the FMDV O/EA-3 topotype at the inter-regional scale. We inferred a mean substitution rate of 6.64 × 10-3  nt/site/year and we predicted that the most recent common ancestor for our panel of samples circulated between February 1967 and November 1973 in Yemen, likely reflecting the epidemiological situation in under sampled cattle-exporting East African countries. Our study also reinforces the role previously described of Sudan and South Sudan as a frequent source of FMDVs spread. In particular, we identified two transboundary routes of O/EA-3 diffusion: the first from Sudan to North-East Africa, and from the latter into Israel and Palestine AT; a second from Sudan to Nigeria, Cameroon, and from there to further into West and North-West Africa. This study highlights the necessity to reinforce surveillance at an inter-regional scale in Africa and Western Asia, in particular along the identified migration routes for the implementation of efficient control measures in the fight against FMD.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Teorema de Bayes , Bovinos , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/genética , Nigeria/epidemiología , Filogenia , Serogrupo
6.
Front Vet Sci ; 8: 656256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079833

RESUMEN

The sequencing of viral genomes provides important data for the prevention and control of foot-and-mouth disease (FMD) outbreaks. Sequence data can be used for strain identification, outbreak tracing, and aiding the selection of the most appropriate vaccine for the circulating strains. At present, sequencing of FMD virus (FMDV) relies upon the time-consuming transport of samples to well-resourced laboratories. The Oxford Nanopore Technologies' MinION portable sequencer has the potential to allow sequencing in remote, decentralised laboratories closer to the outbreak location. In this study, we investigated the utility of the MinION to generate sequence data of sufficient quantity and quality for the characterisation of FMDV serotypes O, A, Asia 1. Prior to sequencing, a universal two-step RT-PCR was used to amplify parts of the 5'UTR, as well as the leader, capsid and parts of the 2A encoding regions of FMDV RNA extracted from three sample matrices: cell culture supernatant, tongue epithelial suspension and oral swabs. The resulting consensus sequences were compared with reference sequences generated on the Illumina MiSeq platform. Consensus sequences with an accuracy of 100% were achieved within 10 and 30 min from the start of the sequencing run when using RNA extracted from cell culture supernatants and tongue epithelial suspensions, respectively. In contrast, sequencing from swabs required up to 2.5 h. Together these results demonstrated that the MinION sequencer can be used to accurately and rapidly characterise serotypes A, O, and Asia 1 of FMDV using amplicons amplified from a variety of different sample matrices.

7.
PLoS Pathog ; 4(4): e1000050, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18421380

RESUMEN

Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O(1) BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.


Asunto(s)
Brotes de Enfermedades , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/transmisión , Genoma Viral , Animales , Secuencia de Bases , Análisis por Conglomerados , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/aislamiento & purificación , Epidemiología Molecular , Datos de Secuencia Molecular , ARN Viral/análisis , Análisis de Secuencia de ADN , Reino Unido/epidemiología
8.
J Vet Diagn Invest ; 21(3): 321-30, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19407083

RESUMEN

Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). The present report describes the practical steps undertaken to deploy a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to process the samples received during the outbreaks of FMD in the United Kingdom in 2007. Two independent real-time RT-PCR assays targeting different regions (5'UTR and 3D) of the FMD virus (FMDV) genome were used to confirm the presence of FMDV in clinical samples collected from the first infected premises. Once the FMDV strain responsible had been sequenced, a single real-time RT-PCR assay (3D) was selected to test a total of 3,216 samples, including material from all 8 infected premises. Using a 96-well automated system to prepare nucleic acid template, up to 84 samples could be processed within 5 hr of submission, and up to 269 samples were tested per working day. A conservative cut-off was used to designate positive samples, giving rise to an assay specificity of 99.9% or 100% for negative control material or samples collected from negative premises, respectively. For the first time, real-time RT-PCR results were used to recognize preclinical FMD in a cattle herd. Furthermore, during the later stages of the outbreaks, the real-time RT-PCR assay supported an active surveillance program within high-risk cattle herds. To the authors' knowledge, this is the first documented use of real-time RT-PCR as a principal laboratory diagnostic tool following introduction of FMD into a country that was FMD-free (without vaccination) and highlights the advantages of this assay to support control decisions during disease outbreaks.


Asunto(s)
Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Bovinos , Fiebre Aftosa/diagnóstico , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Reino Unido/epidemiología
9.
Vet Microbiol ; 126(1-3): 101-10, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17728080

RESUMEN

A study was conducted to evaluate the performance of a nucleic acid sequence-based amplification (NASBA) assay for the detection of foot-and-mouth disease virus (FMDV). Two detection methods: NASBA-electrochemiluminescence (NASBA-ECL) and a newly developed NASBA-enzyme-linked oligonucleotide capture (NASBA-EOC) were evaluated. The diagnostic sensitivity of these assays was compared with other laboratory-based methods using 200 clinical samples collected from different regions of the world. Assay specificity was also assessed using samples (n=43) of other viruses that cause vesicular disease in livestock and genetic relatives of FMDV. Concordant results were generated for 174/200 (87.0%) of suspect FMD samples between NASBA-ECL and real-time RT-PCR. In comparison with the virus isolation (VI) data, the sensitivity of the NASBA-ECL assay was 92.9%, which was almost identical to that of the real-time RT-PCR (92.4%) for the same set of samples. There was broad agreement between the results of the NASBA-ECL and the simpler NASBA-EOC detection method for 97.1% of samples. In conclusion, this study provides further data to support the use of NASBA as a rapid and sensitive diagnostic method for the detection and surveillance of FMDV.


Asunto(s)
Virus de la Fiebre Aftosa/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Electroquímica/métodos , Mediciones Luminiscentes/veterinaria , Sensibilidad y Especificidad
10.
J Virol Methods ; 143(1): 81-5, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17397937

RESUMEN

An automated one-step real-time reverse transcription polymerase chain reaction (rRT-PCR) protocol was optimised and evaluated for the routine diagnosis of foot-and-mouth disease (FMD). Parallel testing of RNA samples (n=257) indicated that this assay has a diagnostic sensitivity at least equivalent to the automated two-step rRT-PCR protocol previously used for the laboratory detection of FMD virus (FMDV). This more rapid and economical one-step protocol will play a key role in contingency planning for any future outbreaks of FMD in the United Kingdom (UK).


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Animales , Bovinos , Sensibilidad y Especificidad , Reino Unido
11.
J Virol Methods ; 140(1-2): 166-73, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17187870

RESUMEN

Marine caliciviruses form a distinct lineage within the genus Vesivirus (family Caliciviridae). This group includes vesicular exanthema of swine virus (VESV) and San Miguel sea lion virus (SMSV) and other related viruses which have been proposed to be marine in origin isolated from a variety of terrestrial and marine animals. Rapid and reliable detection of marine caliciviruses is important as these viruses appear to be widespread and can cause vesicular disease in a wide variety of susceptible hosts including pigs and experimentally infected cattle where clinical signs cannot be easily distinguished from foot-and-mouth disease (FMD), swine vesicular disease (SVD) and vesicular stomatitis (VS). A real-time RT-PCR assay targeting conserved nucleotide sequences in the RNA-dependent RNA polymerase (3D) region of the genome successfully detected cell culture-grown virus preparations of more than thirty marine calicivirus serotypes. Only the atypical SMSV serotypes 8 and 12 failed to be detected, which provided further indication of genetic divergence between these and the other calicivirus serotypes said to be marine in origin. The real-time RT-PCR assay also specifically amplified RNA from samples collected following experimental inoculation of pigs with VESV. No cross-reactivity was demonstrated when the assay was tested with RNA prepared from representative viruses of FMD, SVD and VS. The real-time RT-PCR assay described is a sensitive and specific tool for detection and differential diagnosis of these viruses from other vesicular-disease causing viruses.


Asunto(s)
Caliciviridae/genética , Caliciviridae/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Secuencia de Bases , Caliciviridae/clasificación , Bovinos , Línea Celular , Cartilla de ADN , Fiebre Aftosa/genética , Genoma Viral , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/química , Leones Marinos , Sensibilidad y Especificidad , Homología de Secuencia de Ácido Nucleico , Serotipificación , Porcinos , Enfermedad Vesicular Porcina/genética , Factores de Tiempo , Exantema Vesicular del Cerdo/genética , Virus de la Estomatitis Vesicular Indiana/genética
12.
J Vet Diagn Invest ; 18(1): 93-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16566264

RESUMEN

Rapid and accurate diagnosis is central to the effective control of foot-and-mouth disease (FMD). It is now recognized that reverse-transcription polymerase chain reaction (RT-PCR) assays can play an important role in the routine detection of FMD virus (FMDV) in clinical samples. The aim of this study was to compare the ability of 2 independent real-time RT-PCR (rRT-PCR) assays targeting the 5' untranslated region (5'UTR) and RNA polymerase (3D) to detect FMDV in clinical samples. There was concordance between the results generated by the 2 assays for 88.1% (347 of 394) of RNA samples extracted from suspensions of epithelial tissue obtained from suspect FMD cases. The comparison between the 2 tests highlighted 19 FMDV isolates (13 for the 5'UTR and 6 for the 3D assay), which failed to produce a signal in 1 assay but gave a positive signal in the other. The sequence of the genomic targets of selected isolates highlighted nucleotide substitutions in the primer or probe regions, thereby providing an explanation for negative results generated in the rRT-PCR assays. These data illustrate the importance of the continuous monitoring of circulating FMDV field strains to ensure the design of the rRT-PCR assay remains fit for purpose and suggest that the use of multiple diagnostic targets could further enhance the sensitivity of molecular methods for the detection of FMDV.


Asunto(s)
Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Secuencia de Bases , Ensayo de Inmunoadsorción Enzimática/veterinaria , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/inmunología , Cabras , Datos de Secuencia Molecular , ARN Viral/análisis , ARN Viral/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Ovinos , Porcinos
13.
Vet Immunol Immunopathol ; 140(3-4): 259-65, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21329991

RESUMEN

The ability to propagate foot-and-mouth disease virus (FMDV) plays an important role in laboratory diagnosis and the production of vaccines to control the spread of the disease. Many established cell lines suffer from poor sensitivity for isolating virus from field samples. One possible factor that limits sensitivity to FMDV is the lack of expression of surface integrins, the primary class of cell receptor used by FMDV to initiate infection. In this study we have sequenced cDNAs encoding these molecules for pigs and subsequently developed quantitative real-time reverse transcription (RT)-PCR assays to quantify underlying mRNA transcription of integrin molecules. These novel assays were used together with flow-cytometry to determine cell surface expression and of 4 different cell culture systems. These studies have identified a clear correlation of sensitivity to FMDV with expression of integrins αVß6 and αVß8. In contrast, cell surface expression of αVß3 or mRNA for the ß1, ß3 or ß5 subunits did not appear to contribute to sensitivity of cells to FMDV. These findings confirm the requirement for αV6 and αVß8 as receptors for isolating FMDV from clinical samples and provide important tools and information for the rational design of recombinant cell lines containing these ligands for improved FMDV diagnosis and vaccine production.


Asunto(s)
Fiebre Aftosa/diagnóstico , Integrinas/genética , Animales , Secuencia de Bases , Bovinos , Línea Celular , Cartilla de ADN/genética , ADN Complementario/genética , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/fisiología , Expresión Génica , Integrinas/química , Datos de Secuencia Molecular , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Virales/química , Receptores Virales/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/biosíntesis , Cultivo de Virus/métodos , Replicación Viral
14.
Vet Res ; 37(1): 121-32, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16336929

RESUMEN

Foot-and-mouth disease virus (FMDV) can be excreted in milk and thereby spread infection to susceptible animals in other holdings. The feasibility of using real-time reverse transcription polymerase chain reaction (rRT-PCR) as a diagnostic tool for detection of FMDV in milk was assessed by studying the excretion of virus from experimentally-infected cattle. Fore- and machine milk samples were collected over a 4-week period from two dairy cows infected with FMDV and from two in-contact cows held in the same pen. The whole, skim, cream and cellular debris components of the milks were tested by automated rRT-PCR and results compared to virus isolation (VI) in cell culture. The onset of clinical signs of FMD in all four cows correlated with viraemia, and the presence of FMDV in other clinical samples. rRT-PCR results matched closely with VI in detecting FMDV in all milk components and generally coincided with, but did not consistently precede, the onset of clinical signs. rRT-PCR detected FMDV in milk up to 23 days post inoculation which was longer than VI. Furthermore, the detection limit of FMDV in milk was greater by rRT-PCR than VI and, in contrast to VI, rRT-PCR detected virus genome following heat treatment that simulated pasteurisation. rRT-PCR was also able to detect FMDV in preservative-treated milk. In conclusion, this study showed that automated rRT-PCR is quicker and more sensitive than VI and can be used to detect FMDV in whole milk as well as milk fractions from infected animals.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/diagnóstico , Leche/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Bovinos , Seguridad de Productos para el Consumidor , Femenino , Virus de la Fiebre Aftosa/genética , Humanos , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA