Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 109(12): 2227-2236, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34080765

RESUMEN

Electrical stimulation has been proved to be critical to regulate cell behavior. But, cell behavior is also susceptible to multiple parameters of the adverse interferences such as surface current, electrochemical reaction products, and non-uniform compositions, which often occur during direct electric stimulation. To effectively prevent the adverse interferences, a novel piezoelectric poly(vinylidene fluoride-trfluoroethylene)(P(VDF-TrFE)) layer was designed to coat onto the indium tin oxide (ITO) planar microelectrode. We found the electrical stimulation was able to regulate the osteogenic differentiation of mesenchymal stem cells (MSCs) through calcium-mediated PKC signaling pathway. Meanwhile, the surface charge of the designed P(VDF-TrFE) coating layer could be easily controlled by the pre-polarization process, which was demonstrated to trigger integrin-mediated FAK signaling pathway, finally up-regulating the osteogenic differentiation of MSCs. Strikingly, the crosstalk in the downstream of the two signaling cascades further strengthened the ERK pathway activation for osteogenic differentiation of MSCs. This P(VDF-TrFE) layer coated electrical stimulation microelectrodes therefore provide a distinct strategy to manipulate multiple-elements of biomaterial surface to regulate stem cell fate commitment.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Microelectrodos , Polivinilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA