Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(6): 3450-3462, 2023 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-37309962

RESUMEN

To explore the pollution characteristics and sources of heavy metals in atmospheric deposition in a typical lead-zinc smelting city, 511 effective atmospheric deposition samples from 22 points in different functional areas of a city in Henan Province were collected monthly during 2021. The concentrations and spatial-temporal distribution of heavy metals were analyzed. The geo-accumulation index method and health risk assessment model were utilized to evaluate the heavy metal pollution degree. The sources of heavy metals were quantitatively analyzed using a positive matrix factorization (PMF) model. The results showed that the average concentrations of ω(Pb), ω(Cd), ω(As), ω(Cr), ω(Cu), ω(Mn), ω(Ni), and ω(Zn) in atmospheric deposition samples were 3185.77, 78.18, 273.67, 149.50, 453.60, 810.37, 54.38, and 2397.38 mg·kg-1, respectively, which were all higher than the soil background values of Henan Province. All heavy metals except Mn had significant seasonal variation characteristics. The concentrations of Pb, Cd, As, and Cu in the industrial area with lead-zinc smelting were significantly higher than those in other functional areas, and the concentration of Zn was the highest in the residential mixed area. The results of the geo-accumulation index showed that the pollution of Cd and Pb were the most serious, followed by that of Zn, Cu, and As, which belonged to the serious-extreme pollution category. The main exposure route of non-carcinogenic risk was hand-mouth intake. Pb and As posed the greatest non-carcinogenic risk to children in all functional areas. The carcinogenic risks of Cr, As, Cd, and Ni through the respiratory system to humans were all below the threshold values. The analysis of the PMF model showed that the main sources of heavy metals in atmospheric deposition were industrial pollution sources (39.7%), transportation sources (28.9%), secondary dust sources (14.4%), incineration and coal combustion sources (9.3%), and natural sources (7.8%).

2.
Sci Total Environ ; 827: 154280, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35247402

RESUMEN

In this study, we investigated the emission and fate of 9 organophosphate esters (OPEs) from a natural environment chamber, in which three environment matrices (i.e., air, dust, and window film samples) as well as three decoration materials (i.e., laminate flooring, latex paint, and nonwoven paper) were collected within gradient variation of room temperature and relative humidity. ΣAlkyl-OPEs and ΣCl-OPEs were the predominant classes in the three environment matrices, accounting - on average - for 98.7%, 99.8% and 99.3% of ΣOPEs in indoor dust, air and window film, respectively. TBOEP was the most abundant OPE in air, dust, and laminate flooring, respectively, while tris (2-chloro-isopropyl) phosphate (TCIPP) and tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) in nonwoven paper and latex paint, respectively. The results showed that higher room temperature expedited the emission of OPEs to indoor air. However, the room temperature and relative humidity had no effect on the levels of OPEs in dust. The OPEs equilibrium time in indoor environment may be dependent on room temperature and relative humidity. The area specific emission rates (SERs) of the three materials were calculated, and an optimal expression based on the concept of mass balance model was constructed, preliminarily revealing a general relationship between OPEs source and sink effects in indoor environment.


Asunto(s)
Retardadores de Llama , China , Polvo/análisis , Monitoreo del Ambiente , Ésteres/análisis , Retardadores de Llama/análisis , Látex , Organofosfatos/análisis , Fosfatos
3.
Chemosphere ; 199: 98-106, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29433033

RESUMEN

A highly selective sample cleanup method using molecularly imprinted polymers (MIP) was developed for the enrichment of domoic acid (DA, an amnesic shellfish toxin) from both seawater and shellfish samples. Molecular modelling was firstly applied to screening a suitable functional monomer and optimize the polymer preparation. Theoretical results were in a good agreement with those of the experimental studies. MIP was prepared by precipitation polymerization using 1, 3, 5-pentanetricarboxylic acid and 2-(Trifluoromethyl)acrylic acid as the template molecule and functional monomer, respectively. The morphology and molecular structure of MIP were revealed by scanning electron microscope (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. The obtained MIP showed high affinity and selectivity for DA with binding site numbers of 0.875 mg g-1 and an average association constant of 0.219 L mg-1 evaluated by adsorption experiments. The developed molecularly imprinted solid-phase extraction (MISPE) column achieved satisfied adsorption rate (99.2%) and recovery (71.2%) with relative standard deviation (RSD) less than 1.0%, which is more stable and precise than the C18, SAX, and HLB columns. Finally, the determination method for DA in both seawater and shellfish samples was then successfully established and validated using MISPE coupled with high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The method limit of detection was 20 µg L-1 and 50 µg kg-1 for seawater and shellfish, respectively. This study demonstrates that molecular modelling is a useful tool to screening functional monomer and optimize polymer preparation. It provides an innovative polymer for trace DA monitoring in both seawater and shellfish.


Asunto(s)
Ácido Kaínico/análogos & derivados , Impresión Molecular/métodos , Polímeros/química , Agua de Mar/química , Mariscos , Adsorción , Ácido Kaínico/síntesis química , Modelos Moleculares , Polimerizacion , Extracción en Fase Sólida/métodos , Espectroscopía Infrarroja por Transformada de Fourier
4.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
5.
J Hazard Mater ; 261: 570-6, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23994655

RESUMEN

To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h.


Asunto(s)
Compuestos Azo/química , Peróxido de Hidrógeno/química , Naftalenosulfonatos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Electrodos , Electrólisis , Grafito/química , Politetrafluoroetileno/química , Hollín/química , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA