Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506359

RESUMEN

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Cromatografía de Gases y Espectrometría de Masas , Aguas del Alcantarillado/química , Cloruro de Metileno/análisis , Solubilidad , Suelo/química , Digestión
2.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428629

RESUMEN

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Poliestirenos , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Pirólisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Nanopartículas/química
3.
Environ Sci Technol ; 56(24): 17694-17701, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36480640

RESUMEN

Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Microplásticos , Polímeros , Agua de Mar/química , Poliestirenos , Contaminantes Químicos del Agua/análisis
4.
Anal Chem ; 93(32): 11184-11190, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34347439

RESUMEN

Determination of particulate black carbon (PBC) in the environment is of great importance but faces a new challenge due to the increasing occurrence of coexisting microplastics (MPs), which are an emerging contaminant with properties very similar to those of PBC and cannot be discriminated in the chemical digestion procedure of the reported PBC analysis method. Herein, a comprehensive method has been developed for accurately determining PBC by digestive elimination of the coexisting MPs and other non-black carbon organic matter. Water samples were filtered with a glass fiber membrane (0.3 µm pore size), and the collected substances with the membrane were subjected to sulfonation with chlorosulfonic acid and Fenton digestion in sequence and then to the total organic carbon analyzer for quantification of PBC. Under the optimized conditions, MPs of various sizes and polymer types were efficiently eliminated (>91.0%), whereas various PBC samples were undigested with recoveries over 91.7% except for the relatively low recovery of 65.6% for the PBC prepared at a low pyrolysis temperature of 400 °C. The feasibility of the proposed method was verified by analysis of real water samples with a spike recovery of 88.6-100.2%. We anticipate that this work will pave an avenue for reliable determination of PBC in the presence of MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Carbono , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis
5.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36152483

RESUMEN

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Asunto(s)
Poliestirenos , Pirólisis , Calefacción , Microplásticos , Poliestirenos/química , Temperatura
6.
J Chromatogr A ; 1639: 461921, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33524931

RESUMEN

Present study described a sensitive and efficient method for determination of heterocyclic aromatic hydrocarbons using multiwalled carbon nanotubes modified magnetic polyamido-amine dendrimers (MNPs@PAMAM-Gn@MWCNTs) as adsorbent for magnetic solid-phase extraction (MSPE) coupled with gas chromatography-triple quadrupole mass spectrometer (GC-MS/MS). Some pivotal parameters including PAMAM generation, adsorbent dosage, adsorption time, elution time and volume, pH and humic acid concentration were investigated to achieve the best adsorption efficiencies. Under the optimal conditions, 7-methylquinoline, dibenzothiophene and carbazole had good linearity in the concentration range of 0.005-20 µg L - 1, 9-methylcarbazole, 4-methyldibenzothiophene and 4,6-dimethyl dibenzothiophene had good linearity in the concentration range of 0.001-20 µg L - 1. All the correlation coefficients were higher than 0.996. The detection limits of the targets were in the range of 2.2 × 10-4-1.8 × 10-3 µg L - 1 with precisions less than 8.28% (n = 6). The enrichment factors were in the range of 141-147. The spiked recoveries were in the range of 87.0%-115.1% (n = 3). These results indicated that the method could be a reliable alternative tool for monitoring trace heterocyclic aromatic hydrocarbons in environmental water samples.


Asunto(s)
Aminas/química , Dendrímeros/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Fenómenos Magnéticos , Nanotubos de Carbono/química , Nylons/química , Hidrocarburos Policíclicos Aromáticos/análisis , Extracción en Fase Sólida/métodos , Adsorción , Nanotubos de Carbono/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA