Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(36): e2303033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964406

RESUMEN

Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.


Asunto(s)
Infarto del Miocardio , Poliésteres , Humanos , Poliésteres/química , Células Endoteliales , Materiales Biocompatibles/química , Fenómenos Magnéticos
2.
Nat Commun ; 12(1): 4395, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285224

RESUMEN

The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Although previous studies have focused on the design and synthesis of self-healing materials, their application in in vivo settings remains limited. Here, we design a series of biodegradable and biocompatible self-healing elastomers (SHEs) with tunable mechanical properties, and apply them to various disease models in vivo, in order to test their reparative potential in multiple tissues and at physiological conditions. We validate the effectiveness of SHEs as promising therapies for aortic aneurysm, nerve coaptation and bone immobilization in three animal models. The data presented here support the translation potential of SHEs in diverse settings, and pave the way for the development of self-healing materials in clinical contexts.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/uso terapéutico , Ingeniería Biomédica , Poliuretanos/uso terapéutico , Animales , Aneurisma de la Aorta/cirugía , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Elastómeros/química , Fijación de Fractura/métodos , Fracturas Óseas/cirugía , Humanos , Masculino , Ensayo de Materiales , Ratones , Transferencia de Nervios/métodos , Traumatismos de los Nervios Periféricos/cirugía , Poliuretanos/química , Ratas , Porcinos , Porcinos Enanos
3.
Nat Med ; 27(3): 480-490, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33723455

RESUMEN

Despite advances in technologies for cardiac repair after myocardial infarction (MI), new integrated therapeutic approaches still need to be developed. In this study, we designed a perfusable, multifunctional epicardial device (PerMed) consisting of a biodegradable elastic patch (BEP), permeable hierarchical microchannel networks (PHMs) and a system to enable delivery of therapeutic agents from a subcutaneously implanted pump. After its implantation into the epicardium, the BEP is designed to provide mechanical cues for ventricular remodeling, and the PHMs are designed to facilitate angiogenesis and allow for infiltration of reparative cells. In a rat model of MI, implantation of the PerMed improved ventricular function. When connected to a pump, the PerMed enabled targeted, sustained and stable release of platelet-derived growth factor-BB, amplifying the efficacy of cardiac repair as compared to the device without a pump. We also demonstrated the feasibility of minimally invasive surgical PerMed implantation in pigs, demonstrating its promise for clinical translation to treat heart disease.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/instrumentación , Infarto del Miocardio/terapia , Prótesis e Implantes , Animales , Materiales Biocompatibles , Diseño de Equipo , Neovascularización Fisiológica , Porcinos , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA