Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 528, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218888

RESUMEN

Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.


Asunto(s)
Enbucrilato , Microburbujas , Imagen Molecular , Ultrasonografía , Animales , Enbucrilato/química , Ratones , Imagen Molecular/métodos , Ultrasonografía/métodos , Humanos , Medios de Contraste/química , Femenino , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos BALB C , Línea Celular Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
2.
Angew Chem Int Ed Engl ; 63(3): e202315552, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38038248

RESUMEN

Droplet-based microfluidics represents a disruptive technology in the field of chemistry and biology through the generation and manipulation of sub-microlitre droplets. To avoid droplet coalescence, fluoropolymer-based surfactants are commonly used to reduce the interfacial tension between two immiscible phases to stabilize droplet interfaces. However, the conventional preparation of fluorosurfactants involves multiple steps of conjugation reactions between fluorinated and hydrophilic segments to form multiple-block copolymers. In addition, synthesis of customized surfactants with tailored properties is challenging due to the complex synthesis process. Here, we report a highly efficient synthetic method that utilizes living radical polymerization (LRP) to produce fluorosurfactants with tailored functionalities. Compared to the commercialized surfactant, our surfactants outperform in thermal cycling for polymerase chain reaction (PCR) testing, and exhibit exceptional biocompatibility for cell and yeast culturing in a double-emulsion system. This breakthrough synthetic approach has the potential to revolutionize the field of droplet-based microfluidics by enabling the development of novel designs that generate droplets with superior stability and functionality for a wide range of applications.


Asunto(s)
Microfluídica , Tensoactivos , Microfluídica/métodos , Polimerizacion , Tensoactivos/química , Emulsiones , Polímeros de Fluorocarbono
3.
Opt Express ; 31(8): 12200-12211, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157384

RESUMEN

A narrow linewidth optical frequency comb (OFC) based on a directly modulated microcavity laser with external optical feedback is investigated numerically and demonstrated experimentally. Based on the numerical simulations with rate equations, the evolution of the optical and electrical spectra is presented for the direct-modulated microcavity laser with increased feedback strength, and the linewidth property is improved at suitable feedback conditions. The simulation results also show good robustness for the generated OFC in terms of feedback strength and phase. Moreover, the OFC generation experiment is performed by combining with the dual-loop feedback structure to suppress the side mode, and an OFC with a side-mode suppression ratio of 31 dB is realized. Thanks to the high electro-optical response of the microcavity laser, a 15-tone OFC with a frequency interval of 10 GHz is obtained. Finally, the linewidth of each comb tooth is measured to be around 7 kHz under the feedback power of 47 µW, which indicates an enormous compression of approximately 2000 times compared with the free-running continuous-wave microcavity laser.

4.
Biomacromolecules ; 24(10): 4444-4453, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36753733

RESUMEN

Polymeric micelles are among the most extensively used drug delivery systems. Key properties of micelles, such as size, size distribution, drug loading, and drug release kinetics, are crucial for proper therapeutic performance. Whether polymers from more controlled polymerization methods produce micelles with more favorable properties remains elusive. To address this question, we synthesized methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers of three different comparable molecular weights (∼9, 13, and 20 kDa), via both conventional free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were subsequently employed to prepare empty and paclitaxel-loaded micelles. While FR polymers had relatively high dispersities (D ∼ 1.5-1.7) compared to their RAFT counterparts (D ∼ 1.1-1.3), they formed micelles with similar pharmaceutical properties (e.g., size, size distribution, critical micelle concentration, cytotoxicity, and drug loading and retention). Our findings suggest that pharmaceutical properties of mPEG-b-p(HPMAm-Bz) micelles do not depend on the synthesis route of their constituent polymers.


Asunto(s)
Electrones , Micelas , Polimerizacion , Polietilenglicoles , Polímeros , Portadores de Fármacos
5.
Environ Res ; 218: 114967, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455630

RESUMEN

We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.


Asunto(s)
Fibra de Algodón , Textiles , Celulosa/química
6.
J Exp Child Psychol ; 232: 105678, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37004264

RESUMEN

Second-order relational information processing is the perception of the relative distance between facial features. Previous studies ignored the effect of different spatial manipulations on second-order sensitivity in face processing, and little is known about its developmental trajectory in East Asian populations, who have stronger holistic face processing than Western populations. We addressed these gaps in the literature through an experiment with four groups of Chinese preschool children (aged 3-6 years; n = 157) and a group of adults (n = 25). The participants were presented with face pairs displaying features with various spatial distance manipulations (Change 1: changes in the spacing between eyes; Change 2: nose-mouth spacing changes; Change 3: a combination of Changes 1 and 2) using a simultaneous two-alternative forced-choice task. Second-order sensitivity was already present in 3-year-old children across all manipulations and became more pronounced in 4-year-old children. Second-order sensitivity to the spatial distance between the eyes (i.e., Changes 1 and 3) among 4-year-olds was higher than that of 3-year-olds and was similar to that of adults, suggesting a key increase of this sensitivity from 3 to 4 years of age. Regarding the Change 2 condition, preschoolers aged 5 and 6 years had higher sensitivity than 3-year-olds; however, all preschoolers' sensitivity was inferior to that of adults. These findings show that the development of Chinese preschoolers' sensitivity for detecting spatial relations between the eyes might be faster than that for detecting nose-mouth spacing, supporting the importance of eyes in face processing.


Asunto(s)
Pueblos del Este de Asia , Reconocimiento Facial , Adulto , Preescolar , Humanos , Cognición , Boca , Reconocimiento Visual de Modelos , Niño , Ojo
7.
Small ; 18(38): e2203325, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986691

RESUMEN

Prostate cancer (PCa) with prostate-specific membrane antigen (PSMA)-specific high expression is well suited for molecularly targeted theranostics. PSMA expression correlates with the malignancy of PCa, and its dimeric form can promote tumor progression by exerting enzymatic activity to activate downstream signal transduction. However, almost no studies have shown that arresting the procancer signaling of the PSMA receptors themselves can cause tumor cell death. Meanwhile, supramolecular self-assembling peptides are widely used to design anticancer agents due to their unique and excellent properties. Here, a PSMA-targeting supramolecular self-assembling nanotheranostic agent, DBT-2FFGACUPA, which actively targets PSMA receptors on PCa cell membranes and induces them to enter the cell and form large aggregates, is developed. This process not only selectively images PSMA-positive tumor cells but also suppresses the downstream procancer signals of PSMA, causing tumor cell death. This work provides an alternative approach and an advanced agent for molecularly targeted theranostics options in PCa that can induce tumor cell death without relying on any reported anticancer drugs.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata , Humanos , Masculino , Polímeros , Neoplasias de la Próstata/tratamiento farmacológico , Transducción de Señal
8.
Clin Oral Implants Res ; 32(2): 180-191, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33220090

RESUMEN

OBJECTIVES: To compare clinical and radiographic outcomes between transcrestal sinus floor elevation (TSFE) and lateral sinus floor elevation (LSFE) approaches of simultaneous implant placement in atrophic maxilla. MATERIALS AND METHODS: Patients with a residual bone height (RBH) ≤6 mm were enrolled and randomly assigned to TSFE and LSFE groups. Patients in both groups simultaneously underwent sinus floor elevation with bovine-derived xenograft and implant placement. Clinical and radiographic results were evaluated immediately after surgery and after 6, 12, 18, and 24 months. The endo-sinus bone gain (ESBG), apical implant bone height (ABH), endo-sinus bone-implant contact rate (EBICR), and crestal bone level (CBL) were assessed using panoramic radiographs. RESULTS: Forty-one implants (TSFE: 21, LSFE: 20) were placed in cases with a mean RBH of 3.77 ± 1.16 mm. All implants obtained clinical success and satisfactory ESBG at 24 months. No significant differences were found in ESBG and ABH between two groups immediately after surgery, but LSFE group showed significantly higher values than TSFE group thereafter. Grafts in TSFE group reached stability 6 months earlier than that in LSFE group. In both groups, EBICR was almost 100%, and CBL showed no detectable changes. CONCLUSIONS: LSFE can achieve higher ESBG 2 years after surgery. Otherwise, TSFE could be an alternative to LSFE, when the access for lateral window preparation is limited. Both approaches were highly predictable for RBH ≤6 mm during 24-month observation period for the implants placed simultaneously.


Asunto(s)
Implantes Dentales , Elevación del Piso del Seno Maxilar , Senos Transversos , Implantación Dental Endoósea , Humanos , Maxilar/cirugía , Seno Maxilar/cirugía , Estudios Prospectivos , Resultado del Tratamiento
9.
J Am Chem Soc ; 142(28): 12133-12139, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32524819

RESUMEN

Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.


Asunto(s)
Imidazoles/farmacología , Glicoproteínas de Membrana/agonistas , Profármacos/farmacología , Quinolinas/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , beta-Galactosidasa/inmunología , Animales , Imidazoles/química , Imidazoles/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Profármacos/química , Profármacos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Propiedades de Superficie , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo
10.
Acc Chem Res ; 52(6): 1543-1554, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120725

RESUMEN

Nanomedicine holds significant potential to improve the efficacy of cancer immunotherapy. Thus far, nanomedicines, i.e., 1-100(0) nm sized drug delivery systems, have been primarily used to improve the balance between the efficacy and toxicity of conjugated or entrapped chemotherapeutic drugs. The clinical performance of cancer nanomedicines has been somewhat disappointing, which is arguably mostly due to the lack of tools and technologies for patient stratification. Conversely, the clinical progress made with immunotherapy has been spectacular, achieving complete cures and inducing long-term survival in advanced-stage patients. Unfortunately, however, immunotherapy only works well in relatively small subsets of patients. Increasing amounts of preclinical and clinical data demonstrate that combining nanomedicine with immunotherapy can boost therapeutic outcomes, by turning "cold" nonimmunoresponsive tumors and metastases into "hot" immunoresponsive lesions. Nano-immunotherapy can be realized via three different approaches, in which nanomedicines are used (1) to target cancer cells, (2) to target the tumor immune microenvironment, and (3) to target the peripheral immune system. When targeting cancer cells, nanomedicines typically aim to induce immunogenic cell death, thereby triggering the release of tumor antigens and danger-associated molecular patterns, such as calreticulin translocation, high mobility group box 1 protein and adenosine triphosphate. The latter serve as adjuvants to alert antigen-presenting cells to take up, process and present the former, thereby promoting the generation of CD8+ cytotoxic T cells. Nanomedicines targeting the tumor immune microenvironment potentiate cancer immunotherapy by inhibiting immunosuppressive cells, such as M2-like tumor-associated macrophages, as well as by reducing the expression of immunosuppressive molecules, such as transforming growth factor beta. In addition, nanomedicines can be employed to promote the activity of antigen-presenting cells and cytotoxic T cells in the tumor immune microenvironment. Nanomedicines targeting the peripheral immune system aim to enhance antigen presentation and cytotoxic T cell production in secondary lymphoid organs, such as lymph nodes and spleen, as well as to engineer and strengthen peripheral effector immune cell populations, thereby promoting anticancer immunity. While the majority of immunomodulatory nanomedicines are in preclinical development, exciting results have already been reported in initial clinical trials. To ensure efficient translation of nano-immunotherapy constructs and concepts, we have to consider biomarkers in their clinical development, to make sure that the right nanomedicine formulation is combined with the right immunotherapy in the right patient. In this context, we have to learn from currently ongoing efforts in nano-biomarker identification as well as from partially already established immuno-biomarker initiatives, such as the Immunoscore and the cancer immunogram. Together, these protocols will help to capture the nano-immuno status in individual patients, enabling the identification and use of individualized and improved nanomedicine-based treatments to boost the performance of cancer immunotherapy.


Asunto(s)
Portadores de Fármacos/química , Inmunoterapia/métodos , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Animales , Antineoplásicos/uso terapéutico , Humanos , Factores Inmunológicos/uso terapéutico , Liposomas/química , Ratones Endogámicos BALB C , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Ratas , Microambiente Tumoral/efectos de los fármacos
11.
Mol Pharm ; 17(8): 2840-2848, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32589435

RESUMEN

Microbubbles (MB) are routinely used ultrasound (US) contrast agents that have recently attracted increasing attention as stimuli-responsive drug delivery systems. To better understand MB-based drug delivery, we studied the role of drug hydrophobicity and molecular weight on MB loading, shelf-life stability, US properties, and drug release. Eight model drugs, varying in hydrophobicity and molecular weight, were loaded into the shell of poly(butyl cyanoacrylate) (PBCA) MB. In the case of drugs with progesterone as a common structural backbone (i.e., for corticosteroids), loading capacity and drug release correlated well with hydrophobicity and molecular weight. Conversely, when employing drugs with no structural similarity (i.e., four different fluorescent dyes), loading capacity and release did not correlate with hydrophobicity and molecular weight. All model drug-loaded MB formulations could be equally efficiently destroyed upon exposure to US. Together, these findings provide valuable insights on how the physicochemical properties of (model) drug molecules affect their loading and retention in and US-induced release from polymeric MB, thereby facilitating the development of drug-loaded MB formulations for US-triggered drug delivery.


Asunto(s)
Enbucrilato/química , Preparaciones Farmacéuticas/química , Polímeros/química , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Microburbujas , Peso Molecular , Nanopartículas/química
12.
Electrophoresis ; 39(12): 1460-1465, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29543983

RESUMEN

This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications.


Asunto(s)
Microfluídica , Aleaciones/química , Diseño de Equipo/instrumentación , Dispositivos Laboratorio en un Chip , Paladio/química , Tensión Superficial , Estaño/química
13.
Electrophoresis ; 39(7): 957-964, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29292831

RESUMEN

Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean-room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample-reagent mixing. With the integration of smartphone-based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone-based detection platform is portable for on-site quantitative detection.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Proteinuria/orina , Teléfono Inteligente/instrumentación , Estereolitografía , Colorimetría/métodos , Diseño de Equipo/instrumentación , Humanos , Imagen Óptica/instrumentación , Procesos Fotoquímicos , Polimetil Metacrilato/química , Albúmina Sérica Bovina/química , Propiedades de Superficie
14.
Proc Natl Acad Sci U S A ; 111(9): 3304-9, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550485

RESUMEN

Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.


Asunto(s)
Aleaciones/química , Campos Electromagnéticos , Fenómenos Mecánicos , Metales Pesados/química , Nanotecnología/métodos , Simulación por Computador , Nanotecnología/tendencias , Humectabilidad
15.
Nature ; 466(7305): 503-7, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20622853

RESUMEN

X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing protein and its mutations have been found in patients with XLMR and craniofacial deformities. Here we provide multiple lines of evidence establishing PHF8 as the first mono-methyl histone H4 lysine 20 (H4K20me1) demethylase, with additional activities towards histone H3K9me1 and me2. PHF8 is located around the transcription start sites (TSS) of approximately 7,000 RefSeq genes and in gene bodies and intergenic regions (non-TSS). PHF8 depletion resulted in upregulation of H4K20me1 and H3K9me1 at the TSS and H3K9me2 in the non-TSS sites, respectively, demonstrating differential substrate specificities at different target locations. PHF8 positively regulates gene expression, which is dependent on its H3K4me3-binding PHD and catalytic domains. Importantly, patient mutations significantly compromised PHF8 catalytic function. PHF8 regulates cell survival in the zebrafish brain and jaw development, thus providing a potentially relevant biological context for understanding the clinical symptoms associated with PHF8 patients. Lastly, genetic and molecular evidence supports a model whereby PHF8 regulates zebrafish neuronal cell survival and jaw development in part by directly regulating the expression of the homeodomain transcription factor MSX1/MSXB, which functions downstream of multiple signalling and developmental pathways. Our findings indicate that an imbalance of histone methylation dynamics has a critical role in XLMR.


Asunto(s)
Encéfalo/embriología , Encéfalo/enzimología , Cabeza/embriología , Histona Demetilasas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Biocatálisis , Encéfalo/citología , Dominio Catalítico , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , ADN Intergénico/genética , Regulación de la Expresión Génica , Histona Demetilasas/genética , Histonas/química , Proteínas de Homeodominio/genética , Humanos , Maxilares/citología , Maxilares/embriología , Lisina/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Metilación , Neuronas/citología , Neuronas/enzimología , Regiones Promotoras Genéticas , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
Curr Microbiol ; 70(5): 716-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25645737

RESUMEN

The abilities to form biofilms on teeth surface and to metabolize a wide range of carbohydrates are key virulence attributes of Streptococcus mutans. ClpP has been proved to play an important role in biofilm development in streptococci. Here we demonstrated that ClpP was involved in biofilm formation of S. mutans. ClpP inactivation resulted in enhanced biofilm formation or initial cell adherence in broth supplemented with sucrose, while reduced in broth supplemented with glucose or fructose. Our results also indicated that the enhanced capacities of biofilm formation and initial cell adherence were achieved through regulating the expression of a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB and GTFC) at early-exponential growth phase and fructosyltransferase at late-exponential growth phase in the presence of sucrose.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Endopeptidasa Clp/metabolismo , Glucosiltransferasas/metabolismo , Hexosiltransferasas/metabolismo , Streptococcus mutans/enzimología , Streptococcus mutans/fisiología , Adhesión Bacteriana , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica
17.
Biomacromolecules ; 15(3): 1002-9, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24476227

RESUMEN

The objective of this study was to design temperature-sensitive liposomes with tunable release characteristics that release their content at an elevated temperature generated by high intensity focused ultrasound (HIFU) exposure. To this end, thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate of different molecular weights and composition with a cholesterol anchor (chol-pHPMAlac) were synthesized and grafted onto liposomes loaded with doxorubicin (DOX). The liposomes were incubated at different temperatures and their release kinetics were studied. A good correlation between the release-onset temperature of the liposomes and the cloud point (CP) of chol-pHPMAlac was found. However, release took place at significantly higher temperatures than the CP of chol-pHPMAlac, likely at the CP, the dehydration and thus hydrophobicity is insufficient to penetrate and permeabilize the liposomal membrane. Liposomes grafted with chol-pHPMAlac with a CP of 11.5 °C released 89% DOX within 5 min at 42 °C while for the liposomes grafted with a polymer with CP of 25.0 °C, a temperature of 52 °C was needed to obtain the same extent of DOX release. At a fixed copolymer composition, an increase in molecular weight from 6.5 to 14.5 kDa decreased the temperature at which DOX was released with a release-onset temperature from 52 to 42 °C. Liposomes grafted with 5% chol-pHPMAlac exhibited a rapid release to a temperature increase, while at a grafting density of 2 and 10%, the liposomes were less sensitive to an increase in temperature. Sequential release of DOX was obtained by mixing liposomes grafted with chol-pHPMAlac having different CPs. Chol-pHPMAlac grafted liposomes released DOX nearly quantitatively after pulsed wave HIFU. In conclusion, the release of DOX from liposomes grafted with thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate can be tuned to the characteristics and the grafting density of chol-pHPMAlac, making these liposomes attractive for local drug delivery using hyperthermia.


Asunto(s)
Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Liposomas/administración & dosificación , Polímeros/química , Acrilamidas/administración & dosificación , Acrilamidas/química , Línea Celular Tumoral , Doxorrubicina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Polímeros/administración & dosificación , Temperatura
18.
Soft Matter ; 10(16): 2856-62, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24667999

RESUMEN

Methylated urea and sugar are chaotropic and kosmotropic osmolytes, respectively. In the present work, we have investigated the specific anion effect on the lower critical solution temperature (LCST) behavior of poly(N-isopropylacrylamide) (PNIPAM) in the presence of methylated urea or sugars. Differential scanning calorimetry studies revealed that tetramethylurea can adsorb onto the PNIPAM surface, but glucose is excluded from the PNIPAM surface. The specific anion effect on the LCST behavior of PNIPAM is amplified by methylated urea but not by sugars. The amplification of the anion specificity by methylated urea is attributed to an increased difference in the anion-specific polarization of hydrogen bonds, induced by the formation of PNIPAM/methylated urea complexes via hydrophobic interactions. As the number of methyl groups on the methylated urea increases, the extent of amplification of the anion specificity increases due to increasing hydrophobic interactions between the PNIPAM and methylated urea. Additionally, no amplification of the anion specificity is observed in the presence of urea because a PNIPAM/urea complex cannot be formed via hydrophobic interactions.


Asunto(s)
Urea/química , Resinas Acrílicas/química , Aniones/química , Interacciones Hidrofóbicas e Hidrofílicas , Sustancias Macromoleculares/química , Metilación , Soluciones , Temperatura
19.
Chem Soc Rev ; 42(3): 891-901, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23169442

RESUMEN

Protein-based hydrogels are promising materials for tissue engineering and drug delivery due to the unique properties of proteins such as perfect polydispersity, exact control over monomer sequence, ability to fine-tune molecular-level biochemical interactions, etc. This tutorial review summarizes recent progress on the preparation of protein-based hydrogels and their applications. Typically, we introduce two strategies of covalent and non-covalent ones for the preparation of hydrogels. Hydrogels prepared by the covalent strategy are stable and can respond to the conformational change of proteins. They can be applied for cells encapsulation, screening of drug molecules and heavy metals, etc. Hydrogels formed by non-covalent interactions are injectable physical hydrogels. The simple mixing preparation strategy and fast gelation kinetics guarantee the homogeneous encapsulation of cells and therapeutic agents within them. Therefore, they have been widely applied for the delivery of bioactive components, regenerative medicine, etc. The challenges that remained in this field are also summarized in this paper. We envision that rationally designed protein-based hydrogels will have broad applications in many areas including controlled delivery, tissue engineering, drug screening, etc.


Asunto(s)
Materiales Biocompatibles/síntesis química , Reactivos de Enlaces Cruzados/química , Hidrogeles/síntesis química , Proteínas Recombinantes/química , Materiales Biocompatibles/química , Hidrogeles/química , Modelos Moleculares , Ingeniería de Tejidos/métodos
20.
J Basic Microbiol ; 54(11): 1222-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24979467

RESUMEN

Abilities to tolerate environmental stresses and to form biofilms on teeth surface are key virulence attributes of Streptococcus mutans, the primary causative agent of human dental caries. ClpP, the chief intracellular protease of S. mutans, along with ATPases degrades altered proteins that might be toxic for bacteria, and thus plays important roles in stress response. To further understand the roles of ClpP in stress response of S. mutans, a ClpP deficient strain was constructed and used for general stress tolerance, autolysis, mutacins production, and virulence assays. Here, we demonstrated that inactivation of ClpP in S. mutans resulted in a sensitive phenotype to several environmental stresses, including acid, cold, thermal, and oxidative stresses. The ClpP deficient strain displayed slow growth rates, poor growth yields, formation of long chains, increased clumping in broth, and reduced capacity to form biofilms in presence of glucose. Mutacins production and autolysis of S. mutans were also impaired by mutation of clpP. Animals study showed that clpP mutation increased virulence of S. mutans but not significant. However, enhanced abilities to survive lethal acid and to form biofilm in sucrose were observed in ClpP deficient strain. Our findings revealed a broad impact of ClpP on several virulence properties of S. mutans and highlighted the relevance of ClpP proteolysis with progression of diseases caused by S. mutans.


Asunto(s)
Endopeptidasa Clp/metabolismo , Streptococcus mutans/enzimología , Streptococcus mutans/fisiología , Estrés Fisiológico , Animales , Bacteriocinas/metabolismo , Bacteriólisis , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Endopeptidasa Clp/genética , Eliminación de Gen , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus mutans/genética , Streptococcus mutans/crecimiento & desarrollo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA