Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 18(29): e2202964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35717674

RESUMEN

Nanocatalytic medicine is a burgeoning disease treatment model with high specificity and biosafety in which the nanocatalyst is the core of driving catalytic reaction to generate therapeutic outcomes. However, the robust defense systems in the pathological region would counteract nanocatalyst-initiated therapeutics. Here, a Cu-doped polypyrrole is innovatively developed by a facile oxidative polymerization reaction, which exhibits intriguing multi-catalytic activities, including catalyzing H2 O2 to generate O2 and · OH, and consuming reduced glutathione by a Cu(II)-Cu(I) transition approach. By decorating with sonosensitizers and DSPE-PEG, the obtained CuPPy-TP plus US irradiation can induce severe oxidative damage to tumor cells by amplifying oxidative stress and simultaneously relieving antioxidant capacity in tumors based on the highly effective sonochemical and redox reactions. The notable tumor-specific biodegradability, remarkable cell apoptosis in vitro, and tumor suppression in vivo are demonstrated in this work, which not only present a promising biocompatible antitumor nanocatalyst but also broaden the perspective in oxidative stress-based antitumor therapy.


Asunto(s)
Polímeros , Pirroles , Catálisis , Línea Celular Tumoral , Peróxido de Hidrógeno/farmacología , Polímeros/farmacología , Microambiente Tumoral
2.
Adv Sci (Weinh) ; 11(18): e2308251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447152

RESUMEN

Nanomedicine has reshaped the landscape of cancer treatment. However, its efficacy is still hampered by innate tumor defense systems that rely on adenosine triphosphate (ATP) for fuel, including damage repair, apoptosis resistance, and immune evasion. Inspired by the naturally enzymatic reaction of glucose oxidase (GOx) with glucose, here a novel "two birds with one stone" technique for amplifying enzyme-mediated tumor apoptosis and enzyme-promoted metabolic clearance is proposed and achieved using GOx-functionalized rhenium nanoclusters-doped polypyrrole (Re@ReP-G). Re@ReP-G reduces ATP production while increasing H2O2 concentrations in the tumor microenvironment through GOx-induced enzymatic oxidation, which in turn results in the downregulation of defense (HSP70 and HSP90) and anti-apoptotic Bcl-2 proteins, the upregulation of pro-apoptotic Bax, and the release of cytochrome c. These processes are further facilitated by laser-induced hyperthermia effect, ultimately leading to severe tumor apoptosis. As an enzymatic byproduct, H2O2 catalyzes the conversion of rhenium nanoclusters in Re@ReP-G nanostructures into rhenate from the outside in, which accelerates their metabolic clearance in vivo. This Re@ReP-G-based "two birds with one stone" therapeutic strategy provides an effective tool for amplifying tumor apoptosis and safe metabolic mechanisms.


Asunto(s)
Apoptosis , Animales , Ratones , Glucosa Oxidasa/metabolismo , Neoplasias/metabolismo , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Nanomedicina/métodos , Microambiente Tumoral , Peróxido de Hidrógeno/metabolismo , Polímeros/química , Polímeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA