Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 623(7985): 58-65, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914945

RESUMEN

To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Prótesis e Implantes , Heridas y Lesiones , Animales , Ratas , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Conductividad Eléctrica , Oro/química , Hidrogeles/administración & dosificación , Hidrogeles/química , Hidrogeles/uso terapéutico , Nanopartículas del Metal/química , Músculos/lesiones , Músculos/inervación , Robótica , Heridas y Lesiones/rehabilitación , Heridas y Lesiones/cirugía
2.
Small ; 18(41): e2202729, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35989097

RESUMEN

Catechol, a major mussel-inspired underwater adhesive moiety, has been used to develop functional adhesive hydrogels for biomedical applications. However, oxidative catechol chemistry for interpolymer crosslinking and adhesion is exclusively effective under alkaline conditions, with limited applications in non-alkaline conditions. To overcome this limitation, pH-universal catechol-amine chemistry to recapitulate naturally occurring biochemical events induced by pH variation in the mussel foot is suggested. Aldehyde moieties are introduced to hyaluronic acid (HA) by partial oxidation, which enables dual-mode catechol tethering to the HA via both stable amide and reactive secondary amine bonds. Because of the presence of additional reactive amine groups, the resultant aldehyde-modified HA conjugated with catechol (AH-CA) is effectively crosslinked in acidic and neutral pH conditions. The AH-CA hydrogel exhibits not only fast gelation via active crosslinking regardless of pH conditions, but also strong adhesion and excellent biocompatibility. The hydrogel enables rapid and robust wound sealing and hemostasis in neutral and alkaline conditions. The hydrogel also mediates effective therapeutic stem cell and drug delivery even in dynamic and harsh environments, such as a motile heart and acidic stomach. Therefore, the AH-CA hydrogel can serve as a versatile biomaterial in a wide range of pH conditions in vivo.


Asunto(s)
Catecolaminas , Ácido Hialurónico , Aldehídos , Amidas , Materiales Biocompatibles , Catecoles/química , Ácido Hialurónico/química , Hidrogeles/química , Concentración de Iones de Hidrógeno
3.
Nat Mater ; 16(1): 147-152, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27698353

RESUMEN

Bleeding is largely unavoidable following syringe needle puncture of biological tissues and, while inconvenient, this typically causes little or no harm in healthy individuals. However, there are certain circumstances where syringe injections can have more significant side effects, such as uncontrolled bleeding in those with haemophilia, coagulopathy, or the transmission of infectious diseases through contaminated blood. Herein, we present a haemostatic hypodermic needle able to prevent bleeding following tissue puncture. The surface of the needle is coated with partially crosslinked catechol-functionalized chitosan that undergoes a solid-to-gel phase transition in situ to seal punctured tissues. Testing the capabilities of these haemostatic needles, we report complete prevention of blood loss following intravenous and intramuscular injections in animal models, and 100% survival in haemophiliac mice following syringe puncture of the jugular vein. Such self-sealing haemostatic needles and adhesive coatings may therefore help to prevent complications associated with bleeding in more clinical settings.


Asunto(s)
Hemofilia A/complicaciones , Hemorragia/etiología , Hemorragia/prevención & control , Hemostasis Quirúrgica/instrumentación , Agujas/efectos adversos , Punciones/efectos adversos , Punciones/instrumentación , Animales , Materiales Biocompatibles Revestidos/química , Diseño de Equipo , Análisis de Falla de Equipo , Inyecciones Intravenosas/efectos adversos , Inyecciones Intravenosas/instrumentación , Masculino , Ratones , Ratones Endogámicos BALB C
4.
ACS Appl Bio Mater ; 7(5): 3190-3201, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38709861

RESUMEN

We report an near-infrared (NIR)-trackable and therapeutic liposome with skin tumor specificity. Liposomes with a hydrodynamic diameter of ∼20 nm are tracked under the vein visualization imaging system in the presence of loaded paclitaxel and NIR-active agents. The ability to track liposome nanocarriers is recorded on the tissue-mimicking phantom model and in vivo mouse veins after intravenous administration. The trackable liposome delivery provides in vitro and in vivo photothermal heat (∼40 °C) for NIR-light-triggered area-specific chemotherapeutic release. This approach can be linked with a real-time vein-imaging system to track and apply area-specific local heat, which hitchhikes liposomes from the vein and finally releases them at the tumor site. We conducted studies on mice skin tumors that indicated the disappearance of tumors visibly and histologically (H&E stains). The ability of nanocarriers to monitor after administration is crucial for improving the effectiveness and specificity of cancer therapy, which could be achieved in the trackable delivery system.


Asunto(s)
Rayos Infrarrojos , Liposomas , Paclitaxel , Medicina de Precisión , Neoplasias Cutáneas , Liposomas/química , Animales , Ratones , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/terapia , Paclitaxel/química , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Ensayo de Materiales , Materiales Biocompatibles/química , Tamaño de la Partícula , Humanos , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales
5.
Adv Mater ; 35(36): e2301098, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37196994

RESUMEN

Blood vessel anastomosis by suture is a life-saving, yet time-consuming and labor-intensive operation. While suture-less alternatives utilizing clips or related devices are developed to address these shortcomings, suture anastomosis is still overwhelmingly used in most cases. In this study, practical "less-suture" strategies are proposed, rather than ideal "suture-less" methods, to reflect real-world clinical situations. In the case of rat artery (d = 0.64 mm) anastomosis, the less-suture anastomosis involves the application of thin, adhesive, transparent, and self-wrapping films to the site. This surprisingly reduces the number of stitches required from ten (without films) to four (with films), saving 27 min of operating time per vessel. Furthermore, the decreased number of stitches largely alleviates fibrosis-mediated wall-thickening. Thus, a less-suture strategy is particularly useful for anastomosis of multiple vessels in emergency conditions and small-diameter vessels.


Asunto(s)
Adhesivos , Materiales Biocompatibles , Ratas , Animales , Materiales Biocompatibles/uso terapéutico , Arterias/cirugía , Anastomosis Quirúrgica/métodos , Suturas
6.
Biomater Sci ; 10(14): 3739-3746, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35708628

RESUMEN

Polymeric micelles are the most common carriers used for hydrophobic drug delivery. However, they are vulnerable to physiological barriers, such as temperature changes and enzymatic degradation, and can be easily disassembled upon dilution below the critical micelle concentration (CMC) by body fluids after an intravenous injection. Here, we report that Pluronic® micelles with octyl gallate, which is a surfactant containing gallol moieties widely found in antioxidative plant polyphenols, have a low CMC, which improves their colloidal stability without the need for covalent crosslinking. Furthermore, the incorporated gallol moieties provide enzymatic degradation resistance to the micelles owing to their protein affinity, maintaining the hydrophobic cavity of unmodified Pluronic®. Thus, plant-inspired polymeric micelles with low CMC and bioavailability are promising multifunctional vehicles for drug delivery.


Asunto(s)
Micelas , Poloxámero , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Poloxámero/química , Polímeros/química
7.
ACS Nano ; 16(1): 1368-1380, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35006677

RESUMEN

Strain-tolerant reversible adhesion under harsh mechanical deformation is important for realizing long-lasting polymeric adhesives. Despite recent advances, cohesive failure within adhesives remains a critical problem that must be solved to achieve adhesion that is robust against humidity, heat, and mechanical stress. Here, we report a molecular rationale for designing an instantaneous polymeric adhesive with high strain tolerance (termed as iPASTE) even in a stretchable human-machine interface. The iPASTE consists of two biocompatible and eco-friendly polymers, linearly oligomerized green tea extracts, and poly(ethylene glycol) for densely assembled networks via dynamic and reversible hydrogen bonds. Other than the typical approach containing nanoclay or branched adhesive precursors, the linear configuration and conformation of such polymer chains within iPASTE lead to strong and moisture-resistant cohesion/adhesion. Based on the strain-tolerant adhesion of iPASTE, it was demonstrated that a subaqueous interactive human-machine interface integrated with a robot arm and a gold nanomembrane strain-sensitive electronic skin can precisely capture a slithery artificial fish by using finger gesture recognition.


Asunto(s)
Adhesivos , Polímeros , Animales , Humanos , Adhesivos/química , Polímeros/química , Hidrogeles/química , Estrés Mecánico , Humedad
8.
ACS Appl Mater Interfaces ; 14(50): 56395-56406, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484343

RESUMEN

The application of soft hydrogels to stretchable devices has attracted increasing attention in deformable bioelectronics owing to their unique characteristic, "modulus matching between materials and organs". Despite considerable progress, their low toughness, low conductivity, and absence of tissue adhesiveness remain substantial challenges associated with unstable skin-interfacing, where body movements undesirably disturb electrical signal acquisitions. Herein, we report a material design of a highly tough strain-dissipative and skin-adhesive conducting hydrogel fabricated through a facile one-step sol-gel transition and its application to an interactive human-machine interface. The hydrogel comprises a triple polymeric network where irreversible amide linkage of polyacrylamide with alginate and dynamic covalent bonds entailing conjugated polymer chains of poly(3,4-ethylenedioxythiophene)-co-(3-thienylboronic acid) are simultaneously capable of high stretchability (1300% strain), efficient strain dissipation (36,209 J/m2), low electrical resistance (590 Ω), and even robust skin adhesiveness (35.0 ± 5.6 kPa). Based on such decent characteristics, the hydrogel was utilized as a multifunctional layer for successfully performing either electrophysiological cardiac/muscular on-skin sensors or an interactive stretchable human-machine interface.


Asunto(s)
Hidrogeles , Polímeros , Humanos , Adhesividad , Hidrogeles/química , Polímeros/química , Adhesivos/química , Movimiento , Conductividad Eléctrica
9.
ACS Appl Mater Interfaces ; 14(22): 25115-25125, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609008

RESUMEN

For rapid and effective hemostasis of uncontrollable bleeding, versatile hemostatic agents have been emerging. Among them, polyphenol-derived adhesives have attracted those hemostatic materials due to instantaneous formation of sticky barriers by robust interactions between the material and the serum proteins from wound. However, a critical challenge in such phenolic materials lies in long-term storage due to spontaneous oxidation under humid environments, leading to changes in hemostatic capability and adhesive strength. Here, we report a transparent hemostatic film consisting of gallol-conjugated chitosan (CHI-G) for minimizing the phenolic oxidation even for 3 months and maintaining strong tissue adhesiveness and its hemostatic ability. The film undergoes a phase transition from solid to injectable hydrogels at physiological pH for efficiently stopping internal and external hemorrhage. Interestingly, the hemostatic capability of the CHI-G hydrogels after 3 month storage depends on (i) the folded microstructure of the polymer with optimal gallol modification and (ii) an initial phase of either a solution state or a solid film. When the hydrogels are originated from the dehydrated film, their successful hemostasis is observed in a liver bleeding model. Our finding would provide an insight for design rationale of hemostatic formulations with long shelf-life.


Asunto(s)
Quitosano , Hemostáticos , Adhesivos Tisulares , Adhesivos/química , Quitosano/química , Hemorragia/tratamiento farmacológico , Hemostasis , Hemostáticos/química , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Polifenoles/farmacología , Adhesivos Tisulares/química
10.
Nat Nanotechnol ; 17(8): 849-856, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798983

RESUMEN

High-performance photodetecting materials with intrinsic stretchability and colour sensitivity are key requirements for the development of shape-tunable phototransistor arrays. Another challenge is the proper compensation of optical aberrations and noises generated by mechanical deformation and fatigue accumulation in a shape-tunable phototransistor array. Here we report rational material design and device fabrication strategies for an intrinsically stretchable, multispectral and multiplexed 5 × 5 × 3 phototransistor array. Specifically, a unique spatial distribution of size-tuned quantum dots, blended in a semiconducting polymer within an elastomeric matrix, was formed owing to surface energy mismatch, leading to highly efficient charge transfer. Such intrinsically stretchable quantum-dot-based semiconducting nanocomposites enable the shape-tunable and colour-sensitive capabilities of the phototransistor array. We use a deep neural network algorithm for compensating optical aberrations and noises, which aids the precise detection of specific colour patterns (for example, red, green and blue patterns) both under its flat state and hemispherically curved state (radius of curvature of 18.4 mm).


Asunto(s)
Nanocompuestos , Puntos Cuánticos , Color , Polímeros
11.
ACS Appl Mater Interfaces ; 13(9): 10741-10747, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33620191

RESUMEN

Most infectious human viruses are generally found in the bloodstream after being released by infected organs. Thus, hemorrhage in patients, whose blood contains infectious viruses might be a significant risk for secondary infections. In this work, a self-sealing hemostatic needle that causes no bleeding even after its removal is reported. The materials used for the self-sealing needles are inspired by mussel adhesive polysaccharide, chitosan-catechol, which shows a rapid phase transition from a solid phase (i.e., a thin film) to an adhesive gel upon coming into contact with blood. We found that the self-sealing time for the complete hemostasis depends on the oxidation pathway of the conjugated catechol. For high-temperature oxidation (i.e., 60 °C), Michael addition is a dominant oxidative coupling reaction, which weakens the chitosan-catechol attachment force on the needle surface. Thus, the film is easily transferred to the hemorrhaging sites, with the result that there is no bleeding even after a short injection time (<5 s). In contrast, during low-temperature oxidation (4 °C), Schiff base formation is dominant, which strengthens the film attachment force on the needle surface, resulting in continued bleeding owing to a dearth of tissue transfer after the injection.


Asunto(s)
Catecoles/farmacología , Quitosano/farmacología , Hemostasis/efectos de los fármacos , Hemostáticos/farmacología , Agujas , Adhesivos Tisulares/farmacología , Animales , Sangre/metabolismo , Catecoles/química , Catecoles/metabolismo , Quitosano/química , Quitosano/metabolismo , Técnicas Hemostáticas/instrumentación , Hemostáticos/química , Hemostáticos/metabolismo , Masculino , Ratones , Oxidación-Reducción , Transición de Fase , Ratas Sprague-Dawley , Bases de Schiff/química , Temperatura , Factores de Tiempo , Adhesivos Tisulares/química , Adhesivos Tisulares/metabolismo
12.
Int J Pharm ; 600: 120476, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33737100

RESUMEN

Bacterial cellulose nanofibrils (BCNFs), possessing excellent biocompatibility as well as hygroscopicity, are receiving high interest as a biomaterial for biomedical and healthcare treatments, since they exert various interactions with tissues after surface modification with biochemicals such as peptides, proteins, and catechols. Herein, we report a BCNF-based skin adhesion system, wherein cell penetrating peptide (CPP)-conjugated BCNFs were employed to enhance the attraction to the skin under wet conditions. For this, we conjugated Bac7, a type of CPP, with the carboxylate of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized BCNFs. We showed that Bac7-conjugated BCNFs exhibited both hydrophobic and electrostatic interactions with the cell membrane, which eventually led to the remarkable adhesion against the skin surface. Furthermore, we demonstrated that such tailored skin attraction played a key role in improving skin water retention.


Asunto(s)
Péptidos de Penetración Celular , Nanofibras , Celulosa , Óxidos N-Cíclicos , Agua
13.
Adv Mater ; 33(20): e2007346, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33739558

RESUMEN

Soft neuroprosthetics that monitor signals from sensory neurons and deliver motor information can potentially replace damaged nerves. However, achieving long-term stability of devices interfacing peripheral nerves is challenging, since dynamic mechanical deformations in peripheral nerves cause material degradation in devices. Here, a durable and fatigue-resistant soft neuroprosthetic device is reported for bidirectional signaling on peripheral nerves. The neuroprosthetic device is made of a nanocomposite of gold nanoshell (AuNS)-coated silver (Ag) flakes dispersed in a tough, stretchable, and self-healing polymer (SHP). The dynamic self-healing property of the nanocomposite allows the percolation network of AuNS-coated flakes to rebuild after degradation. Therefore, its degraded electrical and mechanical performance by repetitive, irregular, and intense deformations at the device-nerve interface can be spontaneously self-recovered. When the device is implanted on a rat sciatic nerve, stable bidirectional signaling is obtained for over 5 weeks. Neural signals collected from a live walking rat using these neuroprosthetics are analyzed by a deep neural network to predict the joint position precisely. This result demonstrates that durable soft neuroprosthetics can facilitate collection and analysis of large-sized in vivo data for solving challenges in neurological disorders.


Asunto(s)
Nervio Ciático , Animales , Electrodos Implantados , Nanocompuestos , Polímeros , Ratas
15.
Biotechnol Prog ; 30(1): 215-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24281843

RESUMEN

The effective controlled release of small hydrophilic drugs from poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres has remained a challenge, largely due to the difficulty of loading a large amount of the drug inside the microspheres, owing to the hydrophilicity of the drugs. This study provides a new strategy for increasing encapsulation of small hydrophilic drugs inside PLGA microspheres by utilizing noncovalent, physical adsorption between hydrophilic drugs and emulsifying polymers of poly(vinyl alcohol) and pluronic. An order of magnitude increase in drug loading efficiency from 2.7 to 18.6% for dopamine, a model small hydrophilic drug, was achieved. The large amount of dopamine-loaded PLGA formulation herein could be useful for the treatment of Parkinson's disease.


Asunto(s)
Dopamina/química , Composición de Medicamentos/métodos , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Dopamina/farmacocinética , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA