Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 19(1): 76, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731140

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Magnetic resonance imaging (MRI) is one of the most effective imaging methods for the early diagnosis of HCC. However, the current MR contrast agents are still facing challenges in the early diagnosis of HCC due to their relatively low sensitivity and biosafety. Thus, the development of effective MR agents is highly needed for the early diagnosis of HCC. RESULTS: Herein, we fabricated an HCC-targeted nanocomplexes containing SPIO-loaded mesoporous polydopamine (MPDA@SPIO), sialic acid (SA)-modified polyethyleneimine (SA-PEI), and alpha-fetoprotein regulated ferritin gene (AFP-Fth) which was developed for the early diagnosis of HCC. It was found that the prepared nanocomplexes (MPDA@SPIO/SA-PEI/AFP-Fth) has an excellent biocompatibility towards the liver cells. In vivo and in vivo studies revealed that the transfection of AFP-Fth gene in hepatic cells significantly upregulated the expression level of ferritin, thereby resulting in an enhanced contrast on T2-weighted images via the formed endogenous MR contrast. CONCLUSIONS: The results suggested that MPDA@SPIO/SA-PEI/AFP-Fth had a superior ability to enhance the MR contrast of T2-weighted images of tumor region than the other preparations, which was due to its HCC-targeted ability and the combined T2 contrast effect of endogenous ferritin and exogenous SPIO. Our study proved that MPDA@SPIO/SA-PEI/AFP-Fth nanocomplexes could be used as an effective MR contrast agent to detect HCC in the early stage.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Compuestos Férricos/química , Ferritinas/genética , Indoles/química , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ácido N-Acetilneuramínico/química , Polímeros/química , Animales , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Hierro , Hígado/diagnóstico por imagen , Hígado/patología , Neoplasias Hepáticas/patología , Nanopartículas de Magnetita/química , Ratones , Ratones Endogámicos BALB C , Transfección , alfa-Fetoproteínas/metabolismo
2.
J Nanobiotechnology ; 18(1): 80, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448273

RESUMEN

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. RESULTS: Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. CONCLUSIONS: Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.


Asunto(s)
Betametasona , Fármacos Dermatológicos , Liposomas , Psoriasis , Tretinoina , Animales , Betametasona/química , Betametasona/farmacocinética , Betametasona/farmacología , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacología , Fármacos Dermatológicos/toxicidad , Modelos Animales de Enfermedad , Geles , Células HaCaT , Humanos , Liposomas/química , Liposomas/farmacocinética , Liposomas/farmacología , Liposomas/toxicidad , Ratones Endogámicos BALB C , Tamaño de la Partícula , Docilidad , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Ratas , Ratas Sprague-Dawley , Tretinoina/química , Tretinoina/farmacocinética , Tretinoina/farmacología
3.
Pharmazie ; 75(4): 131-135, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295688

RESUMEN

Low drug concentrations at interest sites and unwanted systemic side effects are major obstacles to effective therapy of rheumatoid arthritis (RA). With the aim of improving the efficacy of tofacitinib citrate (TOF), a liposomal system was developed for targeted delivery to inflamed joints, and this approach was validated in a RA rat model. TOF was effectively loaded into the liposomes (entrapment efficiency: 86.5±1.9%; drug loading: 2.3±0.05%) by a pH gradient method, and these molecules featured sustained drug release behaviour over 48 h. In vitro and in vivo studies showed that TOF loaded liposomes (TOFL) could be selectively taken up by inflamed cells and showed improved accumulation in arthritic paws, demonstrating the superior target ability to RA tissues. Moreover, compared to free TOF, TOFL significantly improved the therapeutic efficacy, reduced the inflammatory cytokine expression and lipid peroxidation in synovial cells in the joint tissue of RA rats. Overall, these results indicate that TOFL served as the useful nanocarriers for RA-targeted therapy.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Liposomas/química , Piperidinas/administración & dosificación , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Animales , Artritis Experimental/tratamiento farmacológico , Citocinas/biosíntesis , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Femenino , Pie/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Articulaciones/metabolismo , Articulaciones/patología , Peroxidación de Lípido/efectos de los fármacos , Piperidinas/química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Ratas , Ratas Wistar , Membrana Sinovial/citología , Membrana Sinovial/efectos de los fármacos , Distribución Tisular
4.
Biomater Sci ; 11(18): 6109-6115, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37591802

RESUMEN

The field of biomaterials has experienced substantial evolution in recent years, driven by advancements in materials science and engineering. This has led to an expansion of the biomaterials definition to include biocompatibility, bioactivity, bioderived materials, and biological tissues. Consequently, the intended performance of biomaterials has shifted from a passive role wherein a biomaterial is merely accepted by the body to an active role wherein a biomaterial instructs its biological environment. In the future, the integration of bioinspired designs and dynamic behavior into fabrication technologies will revolutionize the field of biomaterials. This perspective presents the recent advances in the evolution of biomaterials in fabrication technologies and provides a brief insight into smart biomaterials.


Asunto(s)
Materiales Biocompatibles , Ingeniería
5.
ACS Appl Mater Interfaces ; 14(18): 20603-20615, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35476429

RESUMEN

In clinic, metastasis is still the main reason for death for cancer patients. Therefore, it is necessary to track cancer metastases accurately, kill cancer cells effectively, and then improve the prognosis of patients with advanced cancer. Therefore, we designed a liposome-based pretargeted system modified with single-stranded DNA and targeting peptide injected in sequence and then assembled in vivo for multimodality imaging-guided pretargeted synergistic therapy of metastatic breast cancer. The pretargeted system is composed of the first liposome, loaded with near-infrared fluorescence imaging (NIR-II) probe downconversion nanoprobes (DCNP) and magnetic resonance imaging (MRI) contrast agent SPIO (L1/C-Lipo/DS), for primary/metastatic tumor MRI/NIR-II dual-modal imaging, and the second liposome, loaded with glucose oxidase (GOx) and doxorubicin (DOX) (L2/C-Lipo/GD), as the therapeutic component. The SPIO in L1/C-Lipo/DS accumulated in the tumor tissue will provide a necessary iron ion for the therapeutic liposome (L2/C-Lipo/GD) to exert the pretargeted ferroptosis therapy to cancer cells. We demonstrate that the DNA-mediated pretargeting strategy can realize the multimodality imaging-guided synergistically enhanced antitumor effect between the two liposomes. This pretargeted and synergistic in vivo assembly nanomedicine strategy for diagnosis and treatment holds clinical translation potential for cancer management.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Medios de Contraste/uso terapéutico , ADN/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Humanos , Liposomas , Imagen por Resonancia Magnética/métodos
6.
Biomater Sci ; 9(24): 8386-8395, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34787601

RESUMEN

Methotrexate (MTX) as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) through oral and injectable administration is still problematic in the clinic. Herein, a MTX-loaded thermal-responsible flexible liposome (MTFL) incorporated within a carbomer-based gel was prepared as a novel transdermal agent (MTFL/Gel) for effective treatment of RA. It was found that MTFL had an average size of approximately 90 nm, which could rapidly release the drug under thermal conditions. The prepared MTFL/Gel could remarkably increase the MTX skin permeation as compared with free MTX, which was possibly due to the deformable membrane of flexible liposomes. Moreover, the results suggested MTFL/Gel could lead to a remarkably enhanced RA treatment when in combination with microwave hyperthermia. The superior ability of MTFL/Gel to alleviate RA response was attributed to the excellent skin permeation, thermal-responsible drug release, and synergistic anti-arthritic effect of MTX chemotherapy and microwave-induced hyperthermia therapy. Overall, the MTFL/Gel with dual deformable and thermal-responsible performances could be used as a novel promising transdermal agent for enhanced treatment of RA.


Asunto(s)
Artritis Reumatoide , Hipertermia Inducida , Artritis Reumatoide/tratamiento farmacológico , Humanos , Liposomas , Metotrexato , Microondas
7.
ACS Appl Bio Mater ; 4(4): 3476-3489, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35014432

RESUMEN

Lactic acid in the tumor microenvironment is highly correlated with the prognosis of tumor chemoembolization, but there are limited clinical strategies to deal with it. To improve the efficacy, NaHCO3 nanoparticles are innovatively introduced into drug-loaded microspheres to neutralize lactic acid in the tumor microenvironment. Here we showed that multifunctional ethyl cellulose microspheres dual-loaded with doxorubicin (DOX) and NaHCO3 nanoparticles (DOX/NaHCO3-MS) presented excellent antitumor effects by improving the pH of the tumor microenvironment. The homeostasis of the tumor microenvironment was continuously disturbed due to the sustained release of NaHCO3 nanoparticles, which also led to a significant increase in tumor cell apoptosis (compared with the control and DOX-MS groups). We also showed that the administration of DOX/NaHCO3-MS via the hepatic artery in a rabbit model of VX2 orthotopic liver cancer resulted in optimal antitumor efficacy, and the area of tumor necrosis at the embolization site was significantly increased and the proliferation of tumor cells was significantly weakened. The designed DOX/NaHCO3-MS exhibited strong synergistic antitumor effects of embolization, chemotherapy, and tumor microenvironment improvement. The present microspheres provided a strategy for the enhancement of the chemoembolization of hepatocellular carcinoma, which could also be extended to other clinical embolization treatments for blood-rich solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Doxorrubicina/farmacología , Nanopartículas/química , Bicarbonato de Sodio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ensayo de Materiales , Tamaño de la Partícula , Conejos , Bicarbonato de Sodio/química , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos
8.
Int J Pharm ; 576: 119001, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31893540

RESUMEN

The conventional medications are still facing a huge challenge for the treatment of rheumatoid arthritis (RA). Thus, looking for an effective therapy of RA has became an urgent issue nowadays. In this study, a novel thermosensitive liposome loaded with sinomenine hydrochloride (SIN-TSL) was developed by a pH gradient method. The SIN-TSL had a mean particle size of around 100 nm, and an high entrapment efficiency and drug loading capacity. The results also suggested that SIN-TSL had a thermosensitive drug release behaviour, with the drug release rate at 43 °C was much faster than the one at 37 °C. The SIN-TSL could be effectively taken up by lipopolysaccharide-activated HUVECs, without any cytotoxicity was observed. In addition, both in vitro and in vivo studies indicated that the SIN-TSL combined with microwave hyperthermia exhibited superior anti-rheumatoid arthritis effect. Overall, these results suggest that SIN-loaded thermosensitive liposomes combined with microwave hyperthermia could provide an optional strategy for alleviating the clinical symptoms of RA.


Asunto(s)
Antirreumáticos/administración & dosificación , Artritis Reumatoide/terapia , Hipertermia Inducida , Articulaciones/efectos de los fármacos , Lípidos/química , Microondas , Morfinanos/administración & dosificación , 1,2-Dipalmitoilfosfatidilcolina/química , Animales , Antirreumáticos/química , Antirreumáticos/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Colesterol/química , Terapia Combinada , Citocinas/metabolismo , Modelos Animales de Enfermedad , Composición de Medicamentos , Liberación de Fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Articulaciones/metabolismo , Articulaciones/patología , Liposomas , Morfinanos/química , Morfinanos/metabolismo , Tamaño de la Partícula , Ratas Wistar , Solubilidad
9.
Int J Nanomedicine ; 15: 7235-7249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061378

RESUMEN

PROPOSE: The early diagnosis of hepatocellular carcinoma (HCC) with ferritin heavy chain (Fth) modified by alpha-fetoprotein (AFP) promoter has been studied. However, no study has focused on the considerable upregulation and specific targeting effects of transferrin receptors (TfR) caused by the transfection of plasmids encoded with the AFP promoter. Thus, the objective of our study was to investigate whether the transfection of Fth gene modified with AFP promoter (AFP@Fth) could be used for early diagnosis and enhanced treatment of HCC. METHODS: The AFP@Fth plasmid was transfected into AFP positive cells. The expression of intracellular Ferritin was verified by Western blot, and the upregulation of TfR was confirmed by immunofluorescence and flow cytometry analysis. Cellular iron accumulation resulting in decreased imaging signals was examined by magnetic resonance imagining. Doxorubicin liposome modified with transferrin (Tf-LPD) was prepared to investigate the efficiency of the subsequent treatment after transfection. The enhanced drug distribution and effects were investigated both in vitro and in vivo. RESULTS: Both Ferritin and TfR were overexpressed after transfection. The transfected cells showed higher intracellular iron accumulation and resulted in a lower MR T2-weighted imaging (T2WI) intensity, suggesting that the transfection of AFP@Fth could be a potential strategy for early diagnosis of liver cancer. The following treatment efficacy was revealed by Tf-LPD. As compared with un-transfected cells, transfected cells exhibited higher uptake of transferrin-modified liposomes (Tf-LP), which was due to the specific interaction between Tf and TfR overexpressed on the transfected cells. This is also the reason why Tf-LPD showed better in vitro and in vivo anticancer ability than doxorubicin loaded liposome (LPD). These results suggested that transfection of AFP@Fth could result in enhanced therapy of liver cancer. CONCLUSION: Transfection of AFP@Fth could be used for early diagnosis and for enhanced treatment of live cancers.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Doxorrubicina/análogos & derivados , Ferritinas/genética , Neoplasias Hepáticas/diagnóstico por imagen , Oxidorreductasas/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Femenino , Ferritinas/metabolismo , Genes Reporteros , Células Hep G2 , Humanos , Liposomas/administración & dosificación , Liposomas/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Oxidorreductasas/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
10.
Theranostics ; 10(5): 2342-2357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104507

RESUMEN

Acute kidney injury (AKI) caused by sepsis is a serious disease which mitochondrial oxidative stress and inflammatory play a key role in its pathophysiology. Ceria nanoparticles hold strong and recyclable reactive oxygen species (ROS)-scavenging activity, have been applied to treat ROS-related diseases. However, ceria nanoparticles can't selectively target mitochondria and the ultra-small ceria nanoparticles are easily agglomerated. To overcome these shortcomings and improve therapeutic efficiency, we designed an ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Methods: Ceria nanoparticles were modified with triphenylphosphine (TCeria NPs), followed by coating with ROS-responsive organic polymer (mPEG-TK-PLGA) and loaded atorvastatin (Atv/PTP-TCeria NPs). The physicochemical properties, in vitro drug release profiles, mitochondria-targeting ability, in vitro antioxidant, anti-apoptotic activity and in vivo treatment efficacy of Atv/PTP-TCeria NPs were examined. Results: Atv/PTP-TCeria NPs could accumulate in kidneys and hold a great ability to ROS-responsively release drug and TCeria NPs could target mitochondria to eliminate excessive ROS. In vitro study suggested Atv/PTP-TCeria NPs exhibited superior antioxidant and anti-apoptotic activity. In vivo study showed that Atv/PTP-TCeria NPs effectively decreased oxidative stress and inflammatory, could protect the mitochondrial structure, reduced apoptosis of tubular cell and tubular necrosis in the sepsis-induced AKI mice model. Conclusions: This ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin has favorable potentials in the sepsis-induced AKI therapy.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Atorvastatina/farmacología , Cerio/química , Mitocondrias/metabolismo , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Cerio/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
11.
Biomaterials ; 217: 119326, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31288173

RESUMEN

Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 µg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.


Asunto(s)
Micelas , Ácido N-Acetilneuramínico/química , Polietilenglicoles/química , Traumatismos de la Médula Espinal/terapia , Animales , Terapia Combinada , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Minociclina/farmacología , Minociclina/uso terapéutico , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Sprague-Dawley , Médula Espinal/patología , Médula Espinal/ultraestructura , Traumatismos de la Médula Espinal/tratamiento farmacológico
12.
Food Chem ; 261: 322-328, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29739600

RESUMEN

The formulation, physicochemical stability and bioaccessibility of astaxanthin (AST) loaded oil-in-water nanoemulsions fabricated using gypenosides (GPs) as natural emulsifiers was investigated and compared with a synthetic emulsifier (Tween 20) that is commonly applied in food industry. GPs were capable of producing nanoemulsions with a small volume mean diameter (d4,3 = 125 ±â€¯2 nm), which was similar to those prepared using Tween 20 (d4,3 = 145 ±â€¯6 nm) under the same high-pressure homogenization conditions. GPs-stabilized nanoemulsions were stable against droplet growth over a range of pH (6-8) and thermal treatments (60-120 °C). Conversely, instability occurred under acidic (pH 3-5) and high ionic strength (25-100 mM CaCl2) conditions. In comparison with Tween 20, GPs were more effective at inhibiting AST from degradation during 30 days of storage at both 5 and 25 °C. However, GPs led to lower lipid digestion and AST bioaccessibility from nanoemulsions than did Tween 20.


Asunto(s)
Emulsionantes/química , Emulsiones/química , Gynostemma/química , Cinética , Concentración Osmolar , Extractos Vegetales/química , Polisorbatos/química , Xantófilas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA