Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Braz J Biol ; 83: e251219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34669914

RESUMEN

The most common form of psycho-social dysfunction is anxiety with depression being related closely without any age bar. They are present with combined state of sadness, confusion, stress, fear etc. Glyoxalase system contains enzyme named glyoxalase 1 (GLO1).It is a metabolic pathway which detoxifies alpha-oxo-aldehydes, particularly methylglyoxal (MG). Methylglyoxal is mainly made by the breakdown of the glycolytic intermediates, glyceraldehyde-3-phosphates and dihydroxyacetone phosphate. Glyoxylase-1 expression is also related with anxiety behavior. A casual role or GLO-1 in anxiety behavior by using viral vectors for over expression in the anterior cingulate cortex was found and it was found that local GLO-1 over expression increased anxiety behavior. The present study deals with the molecular mechanism of protective activity of eugenol against anxiolytic disorder. A pre-clinical animal study was performed on 42 BALB/c mice. Animals were given stress through conventional restrain model. The mRNA expression of GLO-1 was analyzed by real time RT-PCR. Moreover, the GLO-1 protein expression was also examined by immunohistochemistry in whole brain and mean density was calculated. The mRNA and protein expressions were found to be increased in animals given anxiety as compared to the normal control. Whereas, the expressions were decreased in the animals treated with eugenol and its liposome-based nanocarriers in a dose dependent manner. However, the results were better in animals treated with nanocarriers as compared to the compound alone. It is concluded that the eugenol and its liposome-based nanocarriers exert anxiolytic activity by down-regulating GLO-1 protein expression in mice.


Asunto(s)
Eugenol , Lactoilglutatión Liasa/antagonistas & inhibidores , Animales , Ansiedad/tratamiento farmacológico , Eugenol/farmacología , Eugenol/uso terapéutico , Liposomas , Ratones , Ratones Endogámicos BALB C
2.
Braz. j. biol ; 83: e251219, 2023. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1345535

RESUMEN

Abstract The most common form of psycho-social dysfunction is anxiety with depression being related closely without any age bar. They are present with combined state of sadness, confusion, stress, fear etc. Glyoxalase system contains enzyme named glyoxalase 1 (GLO1).It is a metabolic pathway which detoxifies alpha-oxo-aldehydes, particularly methylglyoxal (MG). Methylglyoxal is mainly made by the breakdown of the glycolytic intermediates, glyceraldehyde-3-phosphates and dihydroxyacetone phosphate. Glyoxylase-1 expression is also related with anxiety behavior. A casual role or GLO-1 in anxiety behavior by using viral vectors for over expression in the anterior cingulate cortex was found and it was found that local GLO-1 over expression increased anxiety behavior. The present study deals with the molecular mechanism of protective activity of eugenol against anxiolytic disorder. A pre-clinical animal study was performed on 42 BALB/c mice. Animals were given stress through conventional restrain model. The mRNA expression of GLO-1 was analyzed by real time RT-PCR. Moreover, the GLO-1 protein expression was also examined by immunohistochemistry in whole brain and mean density was calculated. The mRNA and protein expressions were found to be increased in animals given anxiety as compared to the normal control. Whereas, the expressions were decreased in the animals treated with eugenol and its liposome-based nanocarriers in a dose dependent manner. However, the results were better in animals treated with nanocarriers as compared to the compound alone. It is concluded that the eugenol and its liposome-based nanocarriers exert anxiolytic activity by down-regulating GLO-1 protein expression in mice.


Resumo A forma mais comum de disfunção psicossocial é a ansiedade intimamente relacionada com a depressão, sem qualquer barreira de idade. Elas estão presentes em um estado combinado de tristeza, confusão, estresse, medo etc. O sistema de glioxalase contém uma enzima chamada glioxalase 1 (GLO1). É uma via metabólica que desintoxica alfa-oxo-aldeídos, particularmente metilglioxal (MG). O metilglioxal é produzido principalmente pela quebra dos intermediários glicolíticos, gliceraldeído-3-fosfatos e fosfato de diidroxiacetona. A expressão da glioxalase 1 também está relacionada ao comportamento de ansiedade. Um papel casual ou GLO1 no comportamento de ansiedade usando vetores virais para superexpressão no córtex cingulado anterior foi encontrado e descobriu-se que a superexpressão local de GLO1 aumentava o comportamento de ansiedade. O presente estudo trata do mecanismo molecular da atividade protetora do eugenol contra o transtorno ansiolítico. Um estudo pré-clínico em animais foi realizado em 42 camundongos BALB / c. Os animais foram submetidos ao estresse por meio do modelo de contenção convencional. A expressão de mRNA de GLO1 foi analisada por RT-PCR em tempo real. Além disso, a expressão da proteína GLO1 também foi examinada por imuno-histoquímica em todo o cérebro e a densidade média foi calculada. Verificou-se que as expressões de mRNA e proteínas estavam aumentadas em animais que receberam ansiedade em comparação com o controle normal. Considerando que as expressões foram diminuídas nos animais tratados com eugenol e seus nanocarreadores baseados em lipossomas de forma dependente da dose. No entanto, os resultados foram melhores em animais tratados com nanocarreadores em comparação com o composto sozinho. Conclui-se que o eugenol e seus nanocarreadores baseados em lipossomas exercem atividade ansiolítica por regulação negativa da expressão da proteína GLO1 em camundongos.


Asunto(s)
Animales , Conejos , Eugenol/uso terapéutico , Eugenol/farmacología , Lactoilglutatión Liasa/antagonistas & inhibidores , Ansiedad/tratamiento farmacológico , Liposomas , Ratones Endogámicos BALB C
3.
Biochim Biophys Acta ; 1349(1): 81-95, 1997 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-9421199

RESUMEN

Phospholipids mediate important effects as extracellular messengers in diverse biological systems. We investigated the effects of phosphatidic acid, a biologically active phospholipid potentially involved in the inflammatory process, on calcium mobilization and actin polymerization in human neutrophils and correlated these effects with induction of chemotactic migration. Intermediate-chain length phosphatidic acid (DiC10-PA) induced a biphasic increase in intracellular Ca2+ characterized by a rapid rise commencing immediately upon addition of stimulus followed by a secondary increase which, unlike the initial response, was eliminated by chelation of extracellular Ca2+. Neither of these responses were induced by C10-lysophosphatidic acid or diacylglycerol. The tyrosine kinase inhibitor herbimycin-A (5-10 microg/ml) completely blunted the initial but not the delayed response effected by DiC10-PA. Long-chain phosphatidic acid (DiC18:1) induced only an initial rapid increase in intracellular Ca2+ and this response was similarly markedly attenuated by herbimycin-A. Among several physiologically relevant phospholipids, only phosphatidic acid was able to induce Ca2+ mobilization; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol -- used individually or in mixed liposomes -- were without effect. Phosphatidic acid conferred calcium-mobilizing activity upon inactive liposome preparations and phosphatidic acid-enriched cellular plasma membranes possessed similar calcium-mobilizing activity. Both DiC10-PA and DiC18:1-PA induced actin polymerization in neutrophils at rates which mirrored the influence of each agent on Ca2+ mobilization. Herbimycin-A blunted the initial increase in actin polymerization effected by phosphatidic acid but had no effect on the delayed, EGTA-sensitive phase. DiC10-PA and DiC18:1-PA also induced neutrophil migration along a concentration gradient. Phospholipids that failed to induce a calcium transient, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol, likewise failed to induce either actin polymerization or chemotactic migration. Unlike chemotaxis induced by zymosan-activated human serum, phosphatidate-induced chemotaxis was strongly inhibited by pretreatment of cells with herbimycin-A. Consistent with these observations, phosphatidic acid induced the tyrosine phosphorylation of several proteins as early as 10 s after stimulation. Phosphorylation of two distinct proteins with approximate molecular sizes of 72 and 82 kDa was inhibited by levels of herbimycin A used to effectively inhibit calcium mobilization, actin polymerization and chemotaxis. Thus, in neutrophilic leukocytes, extracellular phosphatidic acid induces a unique tyrosine kinase-based signalling pathway that results in calcium mobilization and actin polymerization. These processes may promote directed cellular migration as a consequence of the interaction of phosphatidic acid with neutrophil plasma membranes.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Neutrófilos/fisiología , Ácidos Fosfatidicos/farmacología , Proteínas Tirosina Quinasas/fisiología , Humanos , Fosforilación , Polímeros/metabolismo , Tirosina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-23120016

RESUMEN

We report a series of 60 cases of post- traumatic temporomandibular joint ankylosis that were treated at our unit from 1992 to 2002 by temporalis fascia flap interposition arthopiasty. Majority of these patients (21 patients, 35%) were in the age group of 15-20 years, with 39 males (65%) and 21 females (35%). The duration of ankylosis varied from 6 months to more than 4 years with 32 patients (54.32%) having a duration of 6 months to 2 years. 44 patients (73.33%) had unilateral white 16 patients (26.67%) had bilateral involvement of temporomandibular joint. Pedicled temporalise fascia axial flap based on superficial temporal artery was used for interpositional arthopiasty. The advantage is that it is available at the operative site, easy to raise, well vascularized, reliable and with better long term results. Adequate mouth opening was achieved in all cases and a long follow up, of up to 10 years for the earlier operated cases, showed no recurrence of ankylosis in any of the patients.

5.
Biochem Mol Biol Int ; 47(1): 9-23, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10092941

RESUMEN

Phosphatidic acid and its hydrolysis product, diacylglycerol, play potentially vital roles as extracellular messengers in numerous cellular systems and may play a key role in regulating hematopoiesis. In this study, we describe an ecto-phosphatidic acid phosphohydrolase that potentially regulates cellular responses to phosphatidic acid on bone marrow derived human hematopoietic progenitors. We partially purified hematopoietic progenitor ecto-PAPase using a novel in-gel phosphatase assay and then characterized the enzyme on phenotypically defined subpopulations of hematopoietic CD34+ progenitors isolated by flow cytometry. The most pronounced PAPase activity was confined to uncommitted CD34+/CD38+ hematopoietic progenitors, which lacked the expression of other lineage-associated antigens. We conclude that hematopoietic progenitor cells at various stages of maturation possess a potent ecto-PAPase, an enzyme well positioned to regulate progenitor cell growth and differentiation induced by phosphatidic acid and related lipids.


Asunto(s)
Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/enzimología , Fosfatidato Fosfatasa/química , Fosfatidato Fosfatasa/aislamiento & purificación , Etilmaleimida/metabolismo , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Modelos Biológicos , Propranolol/metabolismo , Fluoruro de Sodio/metabolismo , Esfingosina/metabolismo , Factores de Tiempo , Vanadatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA