Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771097

RESUMEN

The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting. Here, we demonstrate the potential of using this type of discarded packaging composite as a feedstock for biofuel production. A one-pot ionic liquid-based biomass deconstruction and conversion process was implemented, and the results from the packaging material were compared with those obtained from untreated hemp hurd. At a 120 °C reaction temperature, 7.5% ionic liquid loading, and 2 h reaction time, the packaging materials showed a higher lignocellulosic sugar yield and sugar concentrations than hemp hurd. Hydrolysates prepared from packaging materials also promoted production of higher titers (1400 mg/L) of the jet-fuel precursor bisabolene when used to cultivate an engineered strain of the yeast Rhodosporidium toruloides. Box-Behnken experiments revealed that pretreatment parameters affected the hemp hurd and packaging materials differently, evidencing different degrees of recalcitrance. This study demonstrated that a hemp hurd-based packaging material can be valorized a second time once it reaches the end of its primary use by supplying it as a feedstock to produce biofuels.


Asunto(s)
Cannabis , Líquidos Iónicos , Lignina , Azúcares , Tecnología , Biocombustibles , Biomasa
2.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234813

RESUMEN

Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable "future" lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of "Schiff-base ILs" for further investigation that could also be designed to be task specific.


Asunto(s)
Líquidos Iónicos , Lignina , Aldehídos , Aminas , Biomasa , Hidrólisis , Iminas , Líquidos Iónicos/química , Lignina/química , Azúcares
3.
Microb Cell Fact ; 20(1): 181, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526022

RESUMEN

Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.


Asunto(s)
Bacterias/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Ingeniería Metabólica/normas , Fenoles/análisis , Fenoles/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Técnicas de Cultivo Celular por Lotes , Carboxiliasas/genética , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Medios de Cultivo/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Ingeniería Metabólica/métodos
4.
Microb Cell Fact ; 19(1): 208, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183275

RESUMEN

BACKGROUND: In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. RESULTS: We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. CONCLUSION: Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.


Asunto(s)
Biocombustibles/microbiología , Hidrocarburos/metabolismo , Rhodotorula/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Biomasa , Reactores Biológicos , Vías Biosintéticas , Biotecnología/métodos , ADN de Hongos , Microbiología Industrial , Lignina , Viabilidad Microbiana , Populus
5.
Phys Chem Chem Phys ; 22(5): 2878-2886, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31950118

RESUMEN

Keggin-type polyoxometalate derived ionic liquids (POM-ILs) have recently been presented as effective solvent systems for biomass delignification. To investigate the mechanism of lignin dissolution in POM-ILs, the system involving POM-IL ([C4C1Im]3[PW12O40]) and guaiacyl glycerol-ß-guaiacyl ether (GGE), which contains a ß-O-4 bond (the most dominant bond moiety in lignin), was studied using quantum mechanical calculations and molecular dynamics simulations. These studies show that more stable POM-IL structures are formed when [C4C1Im]+ is anchored in the connecting four terminal oxygen region of the [PW12O40]3- surface. The cations in POM-ILs appear to stabilize the geometry by offering strong and positively charged sites, and the POM anion is a good H-bond acceptor. Calculations of POM-IL interacting with GGE show the POM anion interacts strongly with GGE through many H-bonds and π-π interactions which are the main interactions between the POM-IL anion and GGE and are strong enough to force GGE into highly bent conformations. These simulations provide fundamental models of the dissolution mechanism of lignin by POM-IL, which is promoted by strong interactions of the POM-IL anion with lignin.


Asunto(s)
Líquidos Iónicos/química , Lignina/química , Simulación de Dinámica Molecular , Teoría Cuántica , Compuestos de Tungsteno/química , Guaifenesina/análogos & derivados , Guaifenesina/química , Enlace de Hidrógeno , Lignina/metabolismo , Solubilidad , Electricidad Estática
6.
Biotechnol Bioeng ; 116(8): 1909-1922, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30982958

RESUMEN

Plants are an attractive sourceof renewable carbon for conversion to biofuels and bio-based chemicals. Conversion strategies often use a fraction of the biomass, focusing on sugars from cellulose and hemicellulose. Strategies that use plant components, such as aromatics and amino acids, may improve the efficiency of biomass conversion. Pseudomonas putida is a promising host for its ability to metabolize a wide variety of organic compounds. P. putida was engineered to produce methyl ketones, which are promising diesel blendstocks and potential platform chemicals, from glucose and lignin-related aromatics. Unexpectedly, P. putida methyl ketone production using Arabidopsis thaliana hydrolysates was enhanced 2-5-fold compared with sugar controls derived from engineered plants that overproduce lignin-related aromatics. This enhancement was more pronounced (~seven-fold increase) with hydrolysates from nonengineered switchgrass. Proteomic analysis of the methyl ketone-producing P. putida suggested that plant-derived amino acids may be the source of this enhancement. Mass spectrometry-based measurements of plant-derived amino acids demonstrated a high correlation between methyl ketone production and amino acid concentration in plant hydrolysates. Amendment of glucose-containing minimal media with a defined mixture of amino acids similar to those found in the hydrolysates studied led to a nine-fold increase in methyl ketone titer (1.1 g/L).


Asunto(s)
Aminoácidos/metabolismo , Cetonas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Pseudomonas putida/metabolismo , Arabidopsis/metabolismo , Biocombustibles/microbiología , Hidrólisis , Microbiología Industrial , Metilación , Panicum/metabolismo
7.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637355

RESUMEN

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Lignina/metabolismo , Oxidorreductasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Proteobacteria/enzimología , Especificidad por Sustrato
8.
J Biol Chem ; 291(19): 10228-38, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26940872

RESUMEN

There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of ß-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. ß-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic ß-aryl ether (ß-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the ß-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lignina/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Sphingomonadaceae/enzimología , Catálisis , Cristalografía por Rayos X , Éteres/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
9.
Metab Eng ; 42: 115-125, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28606738

RESUMEN

Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products.


Asunto(s)
Alcoholes Grasos/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Eliminación de Gen , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
10.
Biotechnol Bioeng ; 114(3): 503-515, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27617791

RESUMEN

The enzymatic hydrolysis of cellulose is a thermodynamically challenging catalytic process that is influenced by both substrate-related and enzyme-related factors. In this study, a proteolysis approach was applied to recover and clean the partially converted cellulose at the different stages of enzymatic hydrolysis to monitor the hydrolysis rate as a function of substrate reactivity/accessibility and investigate surface characteristics of the partially converted cellulose. Enzyme-substrate interactions between individual key cellulase components from wild-type Trichoderma reesei and partially converted cellulose were followed and correlated to the enzyme adsorption capacity and dynamic sugar release. Results suggest that cellobiohydrolase CBH1 (Cel7A) and endoglucanases EG2 (Cel5A) adsorption capacities decreased as cellulose was progressively hydrolyzed, likely due to the "depletion" of binding sites. Furthermore, the degree of synergism between CBH1 and EG2 varied depending on the enzyme loading and the substrates. The results provide a better understanding of the relationship between dynamic change of substrate features and the functionality of various cellulase components during enzymatic hydrolysis. Biotechnol. Bioeng. 2017;114: 503-515. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Celulasa/metabolismo , Celulosa/metabolismo , Adsorción , Celulasa/química , Celulosa/análisis , Celulosa/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrólisis , Unión Proteica , Trichoderma/enzimología
11.
Proc Natl Acad Sci U S A ; 111(35): E3587-95, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136131

RESUMEN

Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources.


Asunto(s)
Biomasa , Tecnología Química Verde/métodos , Líquidos Iónicos/química , Lignina/química , Poaceae/química , Polisacáridos/química , Ácidos/química , Aldehídos/química , Álcalis/química , Química Bioinorgánica/métodos , Calor , Energía Renovable , Sacarina/química , Solventes/química , Presión de Vapor , Difracción de Rayos X
12.
Biotechnol Bioeng ; 113(3): 540-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26369903

RESUMEN

Pretreating lignocellulosic biomass with certain ionic liquids results in structural and chemical changes that make the biomass more digestible by enzymes. In this study, pine wood was pretreated with 1-ethyl-3-methylimidazolium chloride/acetate ([C2 mim]Cl and [C2 mim][OAc]) at different temperatures to investigate the relative importance of substrate features, such as accessible surface area, cellulose crystallinity, and lignin content, on enzymatic digestibility. The ionic liquid pretreatments resulted in glucan conversions ranging from 23% to 84% on saccharification of the substrates, with [C2 mim][OAc] being more effective than [C2 mim]Cl. The pretreatments resulted in no delignification of the wood, some loss of cellulose crystallinity under certain conditions, and varying levels of increased surface area. Enzymatic digestibility closely correlated with accessible surface area and porosity measurements obtained using Simons' staining and thermoporosimetry techniques. Increased accessible surface area was identified as the principal structural feature responsible for the improved enzymatic digestibility.


Asunto(s)
Hidrolasas/metabolismo , Imidazoles/metabolismo , Líquidos Iónicos/metabolismo , Lignina/metabolismo , Madera/efectos de los fármacos , Pinus , Temperatura
13.
Biotechnol Bioeng ; 113(1): 82-90, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26137889

RESUMEN

Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization.


Asunto(s)
Pared Celular/química , Celulosa/análisis , Microfibrillas/metabolismo , Oryza/química , Células Vegetales/química , Espectrometría Raman/métodos , Procesamiento Automatizado de Datos
14.
Appl Microbiol Biotechnol ; 100(24): 10237-10249, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27838839

RESUMEN

Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.


Asunto(s)
Productos Biológicos/metabolismo , Farmacorresistencia Microbiana , Líquidos Iónicos/toxicidad , Lignina/metabolismo , Consorcios Microbianos , Solventes/toxicidad , Biocombustibles , Biotransformación
15.
Plant Biotechnol J ; 13(9): 1241-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25583257

RESUMEN

Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Hidroliasas/metabolismo , Lignina/metabolismo , Arabidopsis/química , Arabidopsis/enzimología , Arabidopsis/metabolismo , Biomasa , Pared Celular/metabolismo , Corynebacterium glutamicum/enzimología , Ingeniería Genética/métodos , Lignina/análisis , Lignina/biosíntesis , Redes y Vías Metabólicas
16.
Plant Biotechnol J ; 12(9): 1246-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25431201

RESUMEN

The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel.


Asunto(s)
Materiales Biocompatibles/metabolismo , Biocombustibles , Biotecnología/métodos , Plantas/metabolismo , Biomasa , Filogenia , Plantas/enzimología
17.
Appl Environ Microbiol ; 80(23): 7423-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261509

RESUMEN

Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biota , Consorcios Microbianos , Panicum/metabolismo , Aerobiosis , Bacterias/clasificación , Biomasa , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Lignina/metabolismo , Datos de Secuencia Molecular , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
18.
FEMS Yeast Res ; 14(8): 1286-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25348480

RESUMEN

Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wickerhamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Basidiomycota/efectos de los fármacos , Basidiomycota/crecimiento & desarrollo , Tolerancia a Medicamentos , Imidazoles/toxicidad , Líquidos Iónicos/toxicidad , Biocombustibles , Biomasa , Medios de Cultivo/química , Etanol/metabolismo , Fermentación , Lignina/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(50): 19949-54, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123987

RESUMEN

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.


Asunto(s)
Biocombustibles/análisis , Biocombustibles/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Líquidos Iónicos/farmacología , Panicum/efectos de los fármacos , Biomasa , Escherichia coli/crecimiento & desarrollo , Hidrólisis/efectos de los fármacos , Lignina/metabolismo , Panicum/metabolismo
20.
Biomolecules ; 14(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38540744

RESUMEN

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Asunto(s)
Basidiomycota , Celulasas , Lignina/química , Lacasa/metabolismo , Basidiomycota/metabolismo , Carbohidratos , Azúcares , Éteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA