Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 16(12): 3952-8, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26509930

RESUMEN

It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Ácidos Polimetacrílicos/química , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Supervivencia Celular , Colágeno/química , Disulfuros/química , Combinación de Medicamentos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hidrogeles/farmacología , Laminina/química , Transición de Fase , Ácidos Polimetacrílicos/farmacología , Proteoglicanos/química , Temperatura
2.
Biomaterials ; 52: 262-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818432

RESUMEN

This work describes a 3D, paper-based assay that can isolate sub-populations of cells based on their invasiveness (i.e., distance migrated in a hydrogel) in a gradient of concentration of oxygen (O2). Layers of paper impregnated with a cell-compatible hydrogel are stacked and placed in a plastic holder to form the invasion assay. In most assays, the stack comprises a single layer of paper containing mammalian cells suspended in a hydrogel, sandwiched between multiple layers of paper containing only hydrogel. Cells in the stack consume and produce small molecules; these molecules diffuse throughout the stack to generate gradients in the stack, and between the stack and the bulk culture medium. Placing the cell-containing layer in different positions of the stack, or modifying the permeability of the holder to oxygen or proteins, alters the profile of the gradients within the stack. Physically separating the layers after culture isolates sub-populations of cells that migrated different distances, and enables their subsequent analysis or culture. Using this system, three independent cell lines derived from A549 cancer cells are shown to produce distinguishable migration behavior in a gradient of oxygen. This result is the first experimental demonstration that oxygen acts as a chemoattractant for cancer cells.


Asunto(s)
Quimiotaxis , Neoplasias/patología , Oxígeno/química , Papel , Animales , Bioensayo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular , Factores Quimiotácticos/química , Células HEK293 , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Masculino , Ratones , Ratones Desnudos , Modelos Teóricos , Invasividad Neoplásica , Metástasis de la Neoplasia , Permeabilidad , Fenotipo
3.
Biomaterials ; 35(1): 259-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24095253

RESUMEN

Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.


Asunto(s)
Polímeros , Andamios del Tejido , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Humanos , Microscopía Fluorescente
4.
J Phys Chem B ; 114(32): 10357-67, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20701370

RESUMEN

This work studies the phase separations between polymers and a small molecule in a common aqueous solution that do not have well-defined hydrophobic-hydrophilic separation. In addition to poly(acrylamide) (PAAm) and poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP) also promotes liquid crystal (LC) droplet formation by disodium cromoglycate (5'DSCG) solvated in water. In the presence of these polymers, the concentration of 5'DSCG needed for forming LC droplets is substantially lower than that needed for forming an LC phase by 5'DSCG alone. To define the concentration ranges that 5'DSCG molecules form liquid crystals (either as droplets or as an isotropic-LC mixture), we constructed ternary phase diagrams for 5'DSCG, water, and a polymer - PVA, PVP, or PAAm. We discovered that PAAm with high molecular weight promotes LC droplet formation by 5'DSCG more effectively than PAAm with low molecular weight. At the same weight percentage, long-chain PAAm can cause 5'DSCG to form LC droplets in water, whereas short-chain PAAm does not. Poly(vinyl pyrrolidone) (PVP), which has functional groups that are more dissimilar to 5'DSCG than PVA and PAAm, promotes LC droplet formation by 5'DSCG more effectively than either of the other two polymers. Additionally, small angle neutron scattering data revealed that the assembly structure of 5'DSCG promoted by the presence of PVA is similar to the thread structure formed by 5'DSCG alone. Together, these results reveal how noncovalent polymerization can be promoted by mixing thermodynamically incompatible molecules and elucidate the basic knowledge of nonamphiphilic colloidal science.


Asunto(s)
Polímeros/química , Agua/química , Cromolin Sódico/química , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Cristales Líquidos/química , Estructura Molecular , Dispersión del Ángulo Pequeño , Soluciones , Termodinámica
5.
Appl Environ Microbiol ; 73(13): 4300-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17483274

RESUMEN

Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, L-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5alpha by 99.5% +/- 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.


Asunto(s)
Alcanos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Oro/farmacología , Compuestos de Sulfhidrilo/farmacología , Alcanos/química , Quimiotaxis , Materiales Biocompatibles Revestidos/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Ensayo de Materiales , Estructura Molecular , Movimiento , Especificidad de la Especie , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA