Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 20(12): 6330-6344, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37955890

RESUMEN

Long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been commercialized for over 30 years in at least 20 FDA-approved products. These formulations offer several advantages, including reduced dosing frequency, improved patient compliance, and maintenance of therapeutic levels of drug. Despite extensive studies, the inherent complexity of the PLGA copolymer still poses significant challenges associated with the development of generic formulations having drug release profiles equivalent to those of the reference listed drugs. In addition, small changes to PLGA physicochemical properties or the drug product manufacturing process can have a major impact on the drug release profile of these long-acting formulations. This work seeks to better understand how variability in the physicochemical properties of similar PLGAs affects drug release from PLGA solid implants using Ozurdex (dexamethasone intravitreal implant) as the model system. Four 50:50, acid-terminated PLGAs of similar molecular weights were used to prepare four dexamethasone intravitreal implants structurally equivalent to Ozurdex. The PLGAs were extensively characterized by using a variety of analytical techniques prior to implant manufacture using a continuous, hot-melt extrusion process. In vitro release testing of the four structurally equivalent implants was performed in both normal saline and phosphate-buffered saline (PBS), yielding drastically different results between the two methods. In normal saline, no differences in the release profiles were observed. In PBS, the drug release profiles were sensitive to small changes in the residual monomer content, carboxylic acid end group content, and blockiness of the polymers. This finding further underscores the need for a physiologically relevant in vitro release testing method as part of a robust quality control strategy for PLGA-based solid implant formulations.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Humanos , Liberación de Fármacos , Ácido Poliglicólico/química , Ácido Láctico/química , Solución Salina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Dexametasona/química
2.
J Chromatogr A ; 1705: 464186, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37453175

RESUMEN

High molar mass polyethylene oxide (HM-PEO) is commonly used to enhance the mechanical strength of solid oral opioid drug products to deter abuse. Because the properties of PEO depend on molar mass distribution, accurately determining the molar mass distribution is a necessary part of understanding PEO's role in abuse-deterrent formulations (ADF). In this study, an asymmetrical flow field-flow fractionation (AF4) analytical procedure was developed to characterize PEO polymers with nominal molar masses of 1, 4 or 7 MDa as well as those from in-house prepared placebo ADF. The placebo ADF were manufactured using direct compress or hot-melt-extrusion methods, and subjected to physical manipulation, such as heating and grinding before measurement by AF4 were performed. The molar mass distribution characterized by AF4 revealed that PEO was sensitive to thermal stress, exhibiting decreased molar mass with increased heat exposure. The optimized AF4 method was deemed suitable for characterizing HM-PEO, offering adequate dynamic separation range for PEO with molar mass from 100 kDa to approximately 10 MDa.


Asunto(s)
Formulaciones Disuasorias del Abuso , Fraccionamiento de Campo-Flujo , Polietilenglicoles , Fraccionamiento de Campo-Flujo/métodos , Comprimidos , Composición de Medicamentos
3.
Int J Pharm ; 632: 122557, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36584863

RESUMEN

Intravenous administration of abuse-deterrent opioid products poses high safety risks, in part due to the presence of high molecular weight polymeric excipients. Previous in vivo studies in animal models have shown that the higher molecular weight (Mw) polymeric excipients like polyethylene oxide (PEO) were directly linked to such adverse responses as intravenous hemolysis and kidney damage. PEO polymers have been widely used in abuse-deterrent formulations (ADF) of opioid products, adding to concerns over the general safety of the opioid category due to the unknown safety risk from abuse via unintended routes. The current study focused on the determination of the critical overlap concentration (c*) at various PEO molecular weights to aid in explaining differences in observed adverse responses from previous animal studies on the intravenous administration of PEO solutions. Adverse in vivo responses may be related to the viscoelastic regime of the polymer solution, which depends not only on Mw but also on concentration. Having a localized polymer concentration in the blood above the c*, i.e., the transition from the dilute to semi-dilute entangled viscoelastic regime, may influence the flow behavior and interactions of cells in the blood. The relationship of c* to this combination of physical, chemical, and rheological effects is a possible driving force behind adverse in vivo responses.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Humanos , Excipientes , Polietilenglicoles/efectos adversos , Polietilenglicoles/química , Composición de Medicamentos , Administración Intravenosa , Trastornos Relacionados con Opioides/prevención & control
4.
Int J Pharm ; 647: 123515, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844672

RESUMEN

Over 20 long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been approved by the FDA to date. PLGA is a biodegradable polymer that can extend drug release from these dosage forms for up to six months after administration. Despite the commercial success of several of these formulations, there are still a limited number of products that utilize PLGA, and there are currently no generic counterparts of these products on the market. Significant technical challenges are associated with preparation of chemically and structurally equivalent formulations that yield an equivalent drug release profile to the reference listed drug (RLD) both in vitro and in vivo. In this work, Ozurdex (dexamethasone intravitreal implant) was used as a model system to explore how the manufacturing process of PLGA-based solid implants impacts the quality and performance of the dosage form. Control of implant structural characteristics, including diameter, internal porosity, and surface roughness, was required to maintain accurate unit dose potency. Implants were prepared by a continuous hot-melt extrusion process that was thoroughly characterized to show the importance of precise feeding control to meet dimensional specifications. Five extruder die designs were evaluated using the same hot-melt extrusion process to produce five structurally-distinct implants. The structural differences did not alter the in vitro drug release profile when tested in both normal saline and phosphate-buffered saline (pH 7.4); however, implant porosity was shown to impact the mechanical strength of the implants. This work seeks to provide insight into the manufacturing process of PLGA-based solid implants to support development of future novel and generic drug products.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ácido Poliglicólico/química , Ácido Láctico/química , Composición de Medicamentos , Dexametasona , Implantes de Medicamentos
5.
Dev Biol ; 344(1): 138-49, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20438724

RESUMEN

The relative positions of the brain and mouth are of central importance for models of chordate evolution. The dorsal hollow neural tube and the mouth have often been thought of as developmentally distinct structures that may have followed independent evolutionary paths. In most chordates however, including vertebrates and ascidians, the mouth primordia have been shown to fate to the anterior neural boundary. In ascidians such as Ciona there is a particularly intimate relationship between brain and mouth development, with a thin canal connecting the neural tube lumen to the mouth primordium at larval stages. This so-called neurohypophyseal canal was previously thought to be a secondary connection that formed relatively late, after the independent formation of the mouth primordium and the neural tube. Here we show that the Ciona neurohypophyseal canal is present from the end of neurulation and represents the anteriormost neural tube, and that the future mouth opening is actually derived from the anterior neuropore. The mouth thus forms at the anterior midline transition between neural tube and surface ectoderm. In the vertebrate Xenopus, we find that although the mouth primordium is not topologically continuous with the neural tube lumen, it nonetheless forms at this same transition point. This close association between the mouth primordium and the anterior neural tube in both ascidians and amphibians suggests that the evolution of these two structures may be more closely linked than previously appreciated.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Boca/embriología , Cresta Neural/metabolismo , Animales , Tipificación del Cuerpo , Encéfalo/embriología , Linaje de la Célula , Cordados/genética , Cordados/fisiología , Ciona intestinalis/fisiología , Proteínas ELAV/metabolismo , Modelos Biológicos , Modelos Genéticos , Xenopus , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA