Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 40(11): e1900019, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30932256

RESUMEN

Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium-substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically-relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100-fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high-content bioactive glass microfiber scaffolds by applying predictive modeling.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Poliésteres/química , Estroncio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Viscosidad
2.
Acta Biomater ; 57: 449-461, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28457960

RESUMEN

A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass® 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13-93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100-150µm and porosities of 75% had compressive strengths of 3.4±0.3MPa, 8.4±0.8MPa and 15.3±1.8MPa, for ICIE16, PSrBG and 13-93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making scaffolds from bioactive glasses using highly bioactive glass compositions. The glass compositions have lower silica content that those that have been previously made into amorphous scaffolds and they have been designed to have similar network connectivity to that of the original (and commercially used) 45S5 Bioglass. The aim was to match Bioglass' bioactivity. The scaffolds retain the amorphous nature of bioactive glass while having an open pore structure and compressive strength similar to porous bone (the original 45S5 Bioglass crystallises during sintering, which can cause reduced bioactivity or instability). The new scaffolds showed unexpectedly rapid bone regeneration in a rabbit model.


Asunto(s)
Regeneración Ósea , Cerámica/química , Pulpa Dental/metabolismo , Vidrio/química , Células Madre/metabolismo , Andamios del Tejido/química , Animales , Línea Celular , Pulpa Dental/patología , Femenino , Humanos , Porosidad , Conejos , Células Madre/patología
3.
Acta Biomater ; 30: 319-333, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563472

RESUMEN

In this study, polycaprolactone (PCL)-based composite scaffolds containing 50wt% of 45S5 Bioglass(®) (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using an additive manufacturing technique for bone tissue engineering purposes. The PCL scaffolds were surface coated with calcium phosphate (CaP) to enable further comparison of the osteoinductive potential of different scaffolds: PCL (control), PCL/CaP-coated, PCL/50-45S5 and PCL/50-SrBG scaffolds. The PCL/50-45S5 and PCL/50-SrBG composite scaffolds were reproducibly manufactured with a morphology highly resembling that of PCL only scaffolds. However, 50wt% loading of the bioactive glass (BG) particles into the PCL bulk decreased the scaffold's compressive Young's modulus. Coating of PCL scaffolds with CaP had a negligible effect on the scaffold's porosity and compressive Young's modulus. When immersed in culture media, BG dissolution ions (Si and Sr) were detected for up to 10weeks in the immersion media and surface precipitates were formed on both PCL/50-45S5 and PCL/50-SrBG scaffolds' surfaces, indicating good in vitro bioactivity. In vitro cell studies were conducted using sheep bone marrow stromal cells (BMSCs) under non-osteogenic or osteogenic conditioned media, and under static or dynamic culture environments. All scaffolds were able to support cell adhesion, growth and proliferation. However, when cultured in non-osteogenic media, only PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds showed an up-regulation of osteogenic gene expression. Additionally, under a dynamic culture environment, the rate of cell growth, proliferation and osteoblast-related gene expression was enhanced across all scaffold groups. Subsequently, PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds, with or without seeded cells, were implanted subcutaneously into nude rats for the evaluation of osteoinductivity potential. After 8 and 16weeks, host tissue infiltrated well into the scaffolds, but no mature bone formation was observed in any scaffolds groups. STATEMENT OF SIGNIFICANCE: This novelty of this research work is that it provide a comprehensive comparison, both in vitro and in vivo, between 3 different composite materials widely used in the field of bone tissue engineering for their bone regeneration capabilities. The materials used in this study include polycaprolactone, 45S5 Bioglass, strontium-substituted bioactive glass and calcium phosphate. Additionally, the composite materials were fabricated into the form of 3D scaffolds using additive manufacturing technique, a widely used technique in tissue engineering.


Asunto(s)
Fosfatos de Calcio , Cerámica , Materiales Biocompatibles Revestidos , Osteogénesis/efectos de los fármacos , Poliésteres , Andamios del Tejido/química , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cerámica/química , Cerámica/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Poliésteres/química , Poliésteres/farmacología , Ratas , Ratas Desnudas , Ovinos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA