Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomacromolecules ; 23(11): 4586-4596, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103674

RESUMEN

We report the synthesis and characterization of an amphiphilic polymer comprising a hydrophobic palmitoyl (Pal) group and a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) block, which is capable of forming micelles as a drug carrier system for delivering hydrophobic anticancer drugs such as doxorubicin (DOX). We hypothesize that the sharp polarity contrast between the Pal domain and the pMPC block would strengthen the micelles and improve the drug loading capacity, while the pMPC shells improve the micelle stability and cellular uptake efficiency. In this study, the Pal-pMPC polymer was characterized and compared with a Pal-poly(ethylene glycol) (Pal-PEG) polymer in terms of their micelle formation, cytotoxicity, and drug loading of DOX. The DOX-loaded Pal-pMPC micelles were further evaluated for the cellular uptake and anticancer activities in cell culture systems including the non-multidrug-resistance HeLa cell line and the multidrug-resistance AT3B-1 cell line. The results showed that the Pal-pMPC polymer had a minimal toxicity. The Pal-pMPC micelles exhibited higher drug loading capacity and enhanced cellular internalization efficiency compared to micelles formed by the Pal-PEG polymer. It was also found that DOX-loaded Pal-pMPC micelles exhibited a more efficient anticancer effect than Pal-PEG micelles in multidrug-resistance cancer cells in an environment with fetal bovine serum.


Asunto(s)
Antineoplásicos , Micelas , Humanos , Fosforilcolina/química , Polímeros/química , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/química , Polietilenglicoles/química , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos
2.
Biomacromolecules ; 21(3): 1136-1148, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31944668

RESUMEN

A tumor-targeted surface charge switchable polymeric gene delivery system with the function of switching surface charge upon reaching the tumor site owing to the tumor extracellular pH (pHe) was developed. The delivery system was fabricated by two steps. First, the positively charged polyplexe nanoparticles were formed between ß-cyclodextrin-oligoethylenimine star polymer (CD-OEI) and plasmid DNA (pDNA). Next, the CD-OEI/pDNA polyplex nanoparticles were coated with a pHe-responsive anionic polymer via an electrostatic interaction to form ternary complexes. The pHe-responsive anionic polymer was block copolymers of poly(ethylene glycol) (PEG) and poly(2-aminoethyl methacrylate) (pAEMA) modified with 2,3-dimethylmaleic anhydride (denoted as PPD). The coating polymer was mixed with a small amount of pHe-insensitive PEG-pAEMA modified with succinic anhydride (denoted as PPS), giving a balanced negatively charged and PEG-shielded surface with a pHe-responsive property for achieving the expected tumor-triggered enhanced gene delivery. At physiological pH 7.4, owing to the charge shielding of anionic surface coating and the PEGylation, the negatively charged CD-OEI/pDNA/PPD+PPS polyplex complexes could avoid the undesirable interaction with serum proteins and nontargeted components. However, the amide bond of PPD was sensitive to pH changes and could be easily hydrolyzed under acidic pHe (<6.8) to expose the primary amine group due to nucleophile catalysis by the carboxylic acid. The PEG block in the copolymers was used to further enhance the surface-shielding effect. Our data showed that excellent particle salt stability and serum tolerance were achieved through the PPD+PPS surface coating. The CD-OEI/pDNA/PPD+PPS complexes achieved lower cellular uptake and transfection efficiency at neutral pH 7.4 while exhibiting comparable cellular uptake and transfection efficiency at acidic pH 6.5 as compared to the uncoated polyplexes, indicating that the surface charge switching worked well.


Asunto(s)
Nanopartículas , Neoplasias , ADN , Técnicas de Transferencia de Gen , Humanos , Concentración de Iones de Hidrógeno , Metacrilatos , Polietilenglicoles , Polímeros , Transfección
3.
Biomacromolecules ; 21(4): 1516-1527, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32159339

RESUMEN

Supramolecular hydrogels based on inclusion complexation between cyclodextrins (CDs) and polymers have attracted much interest because of their potential for biomedical applications. It is also attractive to incorporate stimuli-responsive properties into the system to create "smart" hydrogels. Herein, a poly(N-isopropylacrylamide) (PNIPAAm) star polymer with a ß-CD core and an adamantyl-terminated poly(ethylene glycol) (Ad-PEG) polymer were synthesized. They self-assembled into a thermoresponsive pseudo-block copolymer through host-guest complexation and formed supramolecular micelles with the change in environment temperature. Subsequently, an injectable polypseudorotaxane-based supramolecular hydrogel was formed between α-CD and the PEG chains of the pseudo-block copolymer. The hydrogel had a unique network structure involving two types of supramolecular self-assemblies between cyclodextrins and polymers, that is, the host-guest complexation between ß-CD units and adamantyl groups and the polypseudorotaxane formation between α-CD and PEG chains. We hypothesize that the dual supramolecular hydrogel formed at room temperature may be enhanced by increasing the temperature over the lower critical solution temperature of PNIPAAm because of the hydrophobic interactions of PNIPAAm segments. Furthermore, if the hydrogel is applied for sustained delivery of hydrophobic drugs, the copolymer dissolved from the hydrogel could micellize and continue to serve as micellar drug carriers with the drug encapsulated in the hydrophobic core. Rheological tests revealed that the hydrophobic interactions of the PNIPAAm segments could significantly enhance the strength of the hydrogel when the temperature increased from 25 to 37 °C. As compared to hydrogels formed by α-CD and PEG alone, the sustained release property of this thermoresponsive hydrogel for an anticancer drug, doxorubicin (DOX), improved at 37 °C. The hydrogel dissolved slowly and released the pseudo-block copolymer in the form of micelles that continued to serve as drug carriers with DOX encapsulated in the hydrophobic core, achieving a better cellular uptake and anticancer effect than free DOX controls, even in multidrug-resistant cancer cells. According to these findings, the dual supramolecular hydrogel developed in this work with remarkable thermoresponsive properties might have potential for sustained anticancer drug delivery with enhanced therapeutic effect in multidrug-resistant cancer cells.


Asunto(s)
Antineoplásicos , Hidrogeles , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Polietilenglicoles
4.
Virol J ; 14(1): 206, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29073897

RESUMEN

BACKGROUND: Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease, which mostly affects infants and children and leads to severe neurological diseases. Vaccination offers the best option for disease control. We have screened the virus strain FY-23 K-B, which is used as an inactivated vaccine strain. An important issue in the development of vaccines is whether they provide cross protection against all other strains. METHODS: We collected and identified 19 clinical EV71 isolates from mainland China, which all belong to the C4 genotype. We established growth curves of the strains in Vero cells, performed genetic analysis, and evaluated the cross protection efficacy through neutralizing assays using antisera from a rabbit, monkey and adult human immunized with the FY-23 K-B vaccine strain. RESULTS: The antisera showed broad cross protection among the C4 subgroup strains and homotype strain. Neutralizing indexes (NIs) among the isolates and homotype strain of antisera varied between 56.2-1995.3 for rabbit, 17.8-42,169.7 for monkey and 31.6-17,782.8 for human, whereas NIs against Coxsackievirus A16 or other enteroviruses were below 10. CONCLUSIONS: These results suggested that FY-23 K-B used as an antigen could elicit broad spectrum neutralizing antibodies with cross protective efficacy among C4 genotype strains.


Asunto(s)
Protección Cruzada/inmunología , Infecciones por Enterovirus/prevención & control , Enterovirus/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Chlorocebus aethiops , Enterovirus/clasificación , Enterovirus/genética , Enterovirus/aislamiento & purificación , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Femenino , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Macaca mulatta , Masculino , Pruebas de Neutralización , Filogenia , Conejos , Células Vero
5.
Biomacromolecules ; 17(12): 3957-3963, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27776208

RESUMEN

Paclitaxel (PTX), a hydrophobic anticancer drug, is facing several clinical limitations such as low bioavailability and drug resistance. To solve the problems, a well-defined ß-cyclodextrin-poly(N-isopropylacrylamide) star polymer was synthesized and used as a nanocarrier to improve the water solubility and aim to thermoresponsive delivery of PTX to cancer cells. The star polymer was able to form supramolecular self-assembled inclusion complex with PTX via host-guest interaction at room temperature, which is below the low critical solution temperature (LCST) of the star polymer, significantly improving the solubilization of PTX. At body temperature (above LCST), the phase transition of poly(N-isopropylacrylamide) segments induced the formation of nanoparticles, which greatly enhanced the cellular uptake of the polymer-drug complex, resulting in efficient thermoresponsive delivery of PTX. In particular, the polymer-drug complex exhibited better antitumor effects than the commercial formulation of PTX in overcoming the multi-drug resistance in AT3B-1 cells.


Asunto(s)
Acrilamidas/química , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Paclitaxel/farmacología , Polímeros/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , beta-Ciclodextrinas/química , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Cuerpos de Inclusión , Masculino , Nanopartículas/química , Paclitaxel/administración & dosificación , Polímeros/química , Ratas , Temperatura , Células Tumorales Cultivadas
6.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823920

RESUMEN

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efectos de los fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Células HeLa , Animales , Ratones , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Técnicas de Cultivo Tridimensional de Células/métodos , Metacrilatos/química , Técnicas de Cocultivo , Neoplasias/patología
7.
J Colloid Interface Sci ; 667: 259-268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636227

RESUMEN

Indocyanine green (ICG) is an FDA-approved medical diagnostic agent that is widely used as a near-infrared (NIR) fluorescent imaging molecular probe. However, ICG tends to aggregate to form dimers or H-aggregates in water and lacks physical and optical stability, which greatly decreases its absorbance and fluorescence intensity in various applications. Additionally, ICG has no tissue- or tumor-targeting properties, and its structure is not easy to modify, which has further limited its application in cancer diagnosis. In this study, we addressed these challenges by developing a supramolecular colloidal carrier system that targets tumor cells. To this end, we synthesized a water-soluble ß-cyclodextrin (ß-CD) polymer conjugated with folate (FA), denoted PCD-FA, which is capable of forming inclusion complexes with ICG in water through host-guest interactions between the ß-CD moieties and ICG molecules. The inclusion complexes formed by PCD-FA and ICG, called ICG@PCD-FA, dispersed stably in solution as colloidal nanoparticles, greatly improving the physical and optical properties of ICG by preventing ICG dimer formation, where ICG appeared as monomers and even J-aggregates. This resulted in stronger and more stable absorption at a longer wavelength of 900 nm, which may allow for deeper tissue penetration and imaging with reduced interference from biological tissues' autofluorescence. Moreover, ICG@PCD-FA showed a targeting effect on folate receptor-positive (FR+) tumor cells, which specifically highlighted FR+ cells via NIR endoscopic imaging. Notably, ICG@PCD-FA further improved permeation and accumulation in FR+ 3D tumor spheroids. Therefore, this ICG@PCD-FA supramolecular colloidal system may have a great potential for use in tumor NIR imaging and diagnostic applications.


Asunto(s)
Coloides , Ácido Fólico , Verde de Indocianina , Esferoides Celulares , beta-Ciclodextrinas , Verde de Indocianina/química , beta-Ciclodextrinas/química , Ácido Fólico/química , Humanos , Coloides/química , Imagen Óptica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Tamaño de la Partícula , Células Tumorales Cultivadas , Polímeros/química , Nanopartículas/química
8.
Pharm Dev Technol ; 18(5): 1220-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22295954

RESUMEN

A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ß-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of ß-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. ß-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, ß-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.


Asunto(s)
Betametasona/química , Ácido Láctico/química , Ácido Poliglicólico/química , Betametasona/administración & dosificación , Química Farmacéutica/métodos , Preparaciones de Acción Retardada/química , Inyecciones Intraarticulares/métodos , Ácido Láctico/administración & dosificación , Microesferas , Tamaño de la Partícula , Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Alcohol Polivinílico/administración & dosificación , Alcohol Polivinílico/química
9.
Carbohydr Polym ; 320: 121207, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659810

RESUMEN

Tumor proliferation and metastasis rely on energy provided by mitochondria. The hexokinase inhibitor lonidamine (LND) could suppress the activities in mitochondria, being a potential antitumor drug. However, limited water-solubility of LND may hinder its biomedical applications. Besides, the cancer-killing effect of LND is compromised by the high level of glutathione (GSH) in cancer cells. Therefore, it is urgent to find a proper method to simultaneously deliver LND and deplete GSH as well as monitor GSH level in cancer cells. Herein, a host polymer ß-cyclodextrin-polyethylenimine (ß-CD-PEI) and a guest polymer dextran-5-dithio-(2-nitrobenzoic acid) (Dextran-SS-TNB) were synthesized and allowed to form LND-loaded GSH-responsive nanoparticles through host-guest inclusion complexation between ß-CD and TNB as host and guest molecular moieties, respectively, which functioned as a system for simultaneous delivery of LND and -SS-TNB species into cancer cells. As a result, the delivery system could deplete GSH and elevate reactive oxygen species (ROS) level in cancer cells, further induce LND-based mitochondrial dysfunction and ROS-based immunogenic cell death (ICD), leading to a synergistic and efficient anticancer effect. In addition, -SS-TNB reacted with GSH to release TNB2-, which could be a probe with visible light absorption at 410 nm for monitoring the GSH level in the cells.


Asunto(s)
Antineoplásicos , Nanopartículas Multifuncionales , Dextranos , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Glutatión , Polímeros , Sistemas de Liberación de Medicamentos
10.
Carbohydr Polym ; 319: 121170, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567711

RESUMEN

A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which 'glued' individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked polyacrylamide, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.


Asunto(s)
Quitosano , Quitosano/química , Hidrogeles/química , Celulosa/química , Biomasa , Semillas
11.
J Mater Chem B ; 11(8): 1670-1683, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36621526

RESUMEN

There is a tremendous unmet medical need for osteoarthritis (OA) treatment around the world, and pharmacological management is the most common option but presents a limited and short efficacy. Insufficient drug delivery to articular cartilage is the key cause. It is widely accepted that the complex structure of articular cartilage and the rapid clearance of joint liquids largely hinder drug penetration and retention in the cartilage. To address these obstacles, we designed and prepared a positively charged micellar system that can effectively deliver a model drug to the deep zone of the cartilage and prolong the drug retention time. In this work, a triblock copolymer composed of cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(ε-caprolactone) (PCL), denoted as PDMAEMA-PCL-PDMAEMA, was synthesized. A triblock copolymer composed of brush poly[poly(ethylene glycol) methacrylate] (pPEGMA) and PCL, denoted as pPEGMA-PCL-pPEGMA, was prepared for comparison. The two types of triblock copolymers were self-assembled in an aqueous environment to form cationic and neutral micelles, respectively. A hydrophobic fluorescent dye as a model drug was loaded into micelle cores, and the dye-loaded micelles were evaluated for intra-cartilage penetration and retention using porcine knee cartilage explants. The PDMAEMA-PCL-PDMAEMA cationic micelles were found to significantly enhance the intra-cartilage penetration and retention capability due to the electrostatic interaction between the micelles and the negatively charged cartilage extracellular matrix. The confocal microscopy study showed that the cationic micelles could penetrate the full-thickness porcine cartilage explants (around 1.5 mm) within 24 hours. Up to 87% of the cationic micelles were taken up by porcine cartilage explants, and 71% of the absorbed micelles were retained in the tissue for at least 4 days. Although the pPEGMA-PCL-pPEGMA neutral micelles were able to penetrate the full-thickness cartilage, this type of micelle showed lower uptake (44%) and retention (44%) rates. This observation implied that the surface charge of micelles could play an important role in efficient intra-cartilage drug delivery. This study verified the feasibility and effectiveness of the PDMAEMA-PCL-PDMAEM cationic micelles in intra-cartilage drug delivery, showing that cationic micelles could be promising carriers for OA treatment.


Asunto(s)
Portadores de Fármacos , Micelas , Portadores de Fármacos/química , Polímeros/química , Cartílago
12.
Biomolecules ; 12(1)2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-35053250

RESUMEN

Lignin is a natural renewable biomass resource with great potential for applications, while its development into high value-added molecules or materials is rare. The development of biomass lignin as potential nonviral gene delivery carriers was initiated by our group through the "grafting-from" approach. Firstly, the lignin was modified into macroinitiator using 2-bromoisobutyryl bromide. Then cationic polymer chains of poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) were grown from the lignin backbone using atom transfer radical polymerization (ATRP) to yield lignin-PDMAEMA graft copolymers (LPs) with branched structure. To gain a deep understanding of the relationship between the nonviral gene transfection efficiency of such copolymers and their structural and compositional factors, herein eight lignin-based macroinitiators with different modification degrees (MDs, from 3.0 to 100%) were synthesized. Initiated by them, a series of 20 LPs were synthesized with varied structural factors such as grafting degree (GD, which is equal to MD, determining the cationic chain number per lignin macromolecule), cationic chain length (represented by number of repeating DMAEMA units per grafted arm or degree of polymerization, DP) as well as the content of N element (N%) which is due to the grafted PDMAEMA chains and proportional to molecular weight of the LPs. The in vitro gene transfection capability of these graft copolymers was evaluated by luciferase assay in HeLa, COS7 and MDA-MB-231cell lines. Generally, the copolymers LP-12 (N% = 7.28, MD = 36.7%, DP = 13.6) and LP-14 (N% = 6.05, MD = 44.4%, DP = 5.5) showed good gene transfection capabilities in the cell lines tested. Overall, the performance of LP-12 was the best among all the LPs in the three cell lines at the N/P ratios from 10 to 30, which was usually several times higher than PEI standard. However, in MDA-MB-231 at N/P ratio of 30, LP-14 showed the best gene transfection performance among all the LPs. Its gene transfection efficiency was ca. 11 times higher than PEI standard at this N/P ratio. This work demonstrated that, although the content of N element (N%) which is due to the grafted PDMAEMA chains primarily determines the gene transfection efficiency of the LPs, it is not the only factor in explaining the performance of such copolymers with the branched structure. Structural factors of these copolymers such as grafting degree and cationic chain length could have a profound effect on the copolymer performance on gene transfection efficiency. Through carefully adjusting these factors, the gene transfection efficiency of the LPs could be modulated and optimized for different cell lines, which could make this new type of biomass-based biomaterial an attractive choice for various gene delivery applications.


Asunto(s)
ADN , Lignina , ADN/química , Células HeLa , Humanos , Metacrilatos , Transfección
13.
J Mater Chem B ; 10(41): 8407-8418, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36250253

RESUMEN

Cell sheet technology (CST) is a fascinating scaffoldless tissue engineering technique to generate a physiologically representative tissue replacement from autologous sources. As compared to conventional enzymatic cell harvesting methods, CST enables the preservation of important cell-to-cell junctions and extracellular matrix (ECM) components. However, covalent grafting methods are often employed for CST. In this study, a series of triblock copolymers with a hydrophobic and biocompatible poly[(R)-3-hydroxybutyrate] (PHB) central block flanked by varying lengths of terminal poly(N-isopropylacrylamide) (PNIPAAm) blocks (PNIPAAm-PHB-PNIPAAm) was synthesized via atom transfer radical polymerization of NIPAAm. The thermoresponsive triblock copolymers were explored as a non-covalent surface coating for culturing and detaching bovine corneal endothelial cell (BCEC) sheets. Aqueous solutions of the triblock copolymers produced thermosensitive micelles which can be drop-casted on glass substrates, resulting in a temperature-responsive surface. Importantly, incorporating a central hydrophobic PHB block enabled the anchoring of the coating to the bare substrate and enhanced the proliferation rate of the BCECs studied. Effective detachment of an intact cell sheet was also demonstrated via a cooling treatment at 4 °C for 20 min, and the viability of the detached cell sheet was found to be unaffected by the cooling. This work may potentially inspire more studies involving the non-covalent thermoresponsive polymer coatings for corneal tissue engineering applications.


Asunto(s)
Micelas , Polímeros , Bovinos , Animales , Ácido 3-Hidroxibutírico , Polímeros/química , Hidroxibutiratos , Células Endoteliales
14.
ACS Appl Bio Mater ; 4(6): 5057-5070, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007054

RESUMEN

A cationic supramolecular system based on host-guest pseudoblock copolymers was developed for nonviral DNA delivery. In this system, the macromolecular host was a cationic star-shaped polymer composed of a ß-cyclodextrin (ß-CD) core and multiple poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) chains grafted on the core, while the macromolecular guest was a linear adamantyl-ended poly(ethylene glycol) (mPEG-Ad). Pseudoblock copolymers were self-assembled from the polymeric host-guest pairs (typically, 1:1 molar ratio) in aqueous media through the inclusion of an adamantyl group at the end of guest polymer into the ß-CD cavity of host polymers. Through such an approach, the resultant supramolecular system was integrated with not only a superior DNA condensing ability due to the host polymer but also an outstanding polyplex-stabilizing ability as well as biocompatibility due to the guest polymer. The cationic star-shaped host polymers alone were capable of condensing plasmid DNA efficiently into nanoparticles (70-100 nm) with positive surface charge. They showed obviously lower cytotoxicity than PEI 25K (commercial branched polyethylenimine with a molecular weight around 25 kDa) in cell lines of L929, MB231, and Hela under high dose. In serum-free or serum-containing culture conditions, these host polymers exhibited either higher or lower in vitro DNA transfection efficiency as compared with PEI 25K in the three cell lines under study, which was dependent on the N/P ratios and PDMAEMA arm length. Upon incorporation of the PEG block through host-guest complexation with mPEG-Ad (i.e., supramolecular PEGylation), the resulting host-guest supramolecular systems exhibited even lower cytotoxicity than the host polymers alone. The polyplexes between plasmid DNA (pDNA) and the host-guest systems showed significantly improved stability in BSA-PBS buffer solution (pH 7.4) and enhanced in vitro DNA transfection efficiency in the cases of higher N/P ratios or longer PDMAEMA arms in all tested cell lines under both serum-free and serum-containing culture conditions, as compared with the corresponding polyplexes without supramolecular PEGylation. Further, through forming pseudoblock copolymer, the DNA transfection ability of the supramolecular system can be easily modulated and optimized either by changing the ratio between the guest and host or by using different hosts with varied PDMAEMA arm lengths.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , Metacrilatos/administración & dosificación , Polietilenglicoles/administración & dosificación , Animales , Línea Celular , Supervivencia Celular , ADN/química , Humanos , Luciferasas de Renilla/genética , Metacrilatos/química , Ratones , Nylons/química , Plásmidos , Polietilenglicoles/química
15.
Biomed Pharmacother ; 143: 112212, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649345

RESUMEN

Coxsackievirus A10 (CVA10) is the main pathogen of hand, foot, and mouth disease in China. However, there are no CVA10-specific drugs and vaccines, and the pathogenesis and effects of this virus in the body are unknown. We investigated the effect of a clinically isolated CVA10 virus strain (CVA10-25) to investigate its effect in suckling mice through different infection routes. We observed the dynamic distribution and proliferation of the virus in mouse tissues by infecting suckling mice with different doses of the virus and mice of different ages with the same dose of the virus. We also analysed the pathological characteristics after infection. A formaldehyde-inactivated experimental vaccine was prepared to immunise 5-week-old BALB/c female mice three times, and newborn suckling mice were tested for the presence of maternally transmitted antibodies. The viral load in each organ after intracerebral administration was higher than that after intraperitoneal administration; the peroral administration route did not cause disease in mice. Mouse paralysis and death after infection were related to age. The skeletal muscles, heart, and lung showed histopathological changes after infection. We established a 2-day-old BALB/c suckling mouse model that could be infected intracranially to study the pathogenesis and pathology of CVA10. Maternally transmitted antibodies protected the mice against the virus. This study provides a reference for CVA10-related pathogenesis and vaccine research.


Asunto(s)
Enterovirus/crecimiento & desarrollo , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas Virales/administración & dosificación , Animales , Animales Lactantes , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Modelos Animales de Enfermedad , Enterovirus/inmunología , Femenino , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/virología , Interacciones Huésped-Patógeno , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Vacunación , Eficacia de las Vacunas , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Células Vero , Carga Viral , Vacunas Virales/inmunología
16.
J Agric Food Chem ; 68(46): 13241-13246, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-32364750

RESUMEN

Okara (Ok) or soybean residue is produced as a byproduct from the soybean milk and soybean curd industries world wide, most of which is disposed or burned as waste. It is important to explore the possibilities to convert okara to useful materials, because okara is a naturally renewable bioresource. Here, we report the chemical modification of okara by grafting poly(acrylic acid) (PAA) onto the backbones of okara in water medium and the characterization of the Ok-PAA graft copolymers. It was found that the received okara mainly contained insoluble contents in water. The insoluble okara component Ok(Ins) was suspended in water and activated with ammonium persulfate as an initiator, followed by grafting PAA through a free radical polymerization. After the graft polymerization, the product (Ok-PAA) was separated into precipitate and supernatant, which were dried to give Ok-PAA(pre) and Ok-PAA(sup), respectively. It was found that PAA was grafted on Ok backbones and co-precipitated with the insoluble Ok. In addition, Ok-PAA(sup) was found to be translucent as a result of the grafting of PAA. Further, the successful grafting of PAA onto okara backbones was proven by Fourier transform infrared, thermogravimetric analysis, and microscopic measurements. Ok-PAA(sup) dispersed in water formed nanoparticles with an average diameter of 420 nm, while Ok-PAA(pre) was clustered coarse particles in water. The rheological data including the storage modulus, loss modulus, and viscosity indicated that the Ok-PAA product was a viscoelastic gel-like material with potential for agricultural and environmental applications.


Asunto(s)
Resinas Acrílicas/química , Radicales Libres/química , Proteínas de Plantas/química , Polisacáridos/química , Residuos/análisis , Biomasa , Nanopartículas/química , Tamaño de la Partícula , Polimerizacion , Reología , Alimentos de Soja , Viscosidad
17.
Hum Vaccin Immunother ; 16(7): 1586-1594, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32159429

RESUMEN

Enterovirus 71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the two most common pathogens causing hand, foot, and mouth disease (HFMD). Previously, we obtained one candidate live attenuated strain each for EV-A71 and CV-A16; here, we evaluated the safety and immunogenicity of a combinedlive vaccine against EV-A71 and CV-A16 generated from these two candidate strains. Rhesus monkeys were intramuscularly treated with a live combinationvaccine against both EV-A71 and CV-A16 or with either vaccine alone. No fever or atypical clinical signs were observed in any animals. Monkeys vaccinated with the combinationlive vaccine presented no notable pathological changes in the brain, spinal cord, lung, and liver; in contrast, these regions showed inflammatory cell infiltration in monkeys treated with EV-A71 alone or CV-A16 alone. Weak viremia was detected in plasma after inoculation with the combinationvaccine; however, the duration of viral shedding in feces was increased. Biochemical studies revealed a slight increase in aspartate aminotransferase levels in monkeys inoculated with the live combination vaccine; however, histopathological findings did not attribute this change to liver damage. We also found that the live combinationvaccine induced a dual humoral immune response. Cytokine analysis indicated that the combined EV-A71/CV-A16 vaccine significantly down-regulated interleukin-8 production. Here, we have demonstrated that the live attenuated EV-A71/CV-A16 vaccine was safe and could trigger a dual specific immune response. However, its immune protection efficacy requires further investigation.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Enfermedad de Boca, Mano y Pie/prevención & control , Macaca mulatta , Vacunas Combinadas/efectos adversos
18.
Emerg Microbes Infect ; 9(1): 2136-2146, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32930072

RESUMEN

Coxsackievirus A16 (CV-A16) is a major causative pathogen of hand, foot, and mouth diseases (HFMDs). The licensed HFMD vaccine targets EV-A71 without cross-protection against CV-A16. Thus, a CV-A16 vaccine is needed. In this study, the immunogenicity and protective efficacy of a live attenuated CV-A16 candidate, K168-8Ac, were evaluated in a rhesus monkey model. Four passages of this strain (P35, P50, P60, and P70) were administered to monkeys, and its protective effect was identified. The immunized monkeys were clinically asymptomatic, except for slight fever. Weak viraemia was observed, and two doses of vaccination were found to significantly reduce virus shedding. High levels of antibody responses were observed (1:1024-1:2048), along with a significant increase in plasma IL-8. The I.M. group showed a much stronger humoural immunity. Pathological damage was detected mainly in lung tissues, although thalamus, spinal cord, lymph nodes, and livers were involved. After the viral challenge, it was found that two doses of vaccine reduced virus shedding, and the degree of lung damage and the number of organs involved decreased as the passage number increased. Overall, a robust immune response and partial protection against CV-A16, triggered by the K168-8Ac strain, were demonstrated. This study provides valuable data for CV-A16 vaccine development.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Enterovirus/inmunología , Interleucina-8/inmunología , Vacunas Virales/inmunología , Animales , ADN Viral , Modelos Animales de Enfermedad , Enterovirus , Infecciones por Enterovirus/prevención & control , Heces/virología , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Inmunidad , Macaca mulatta , Masculino , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/genética , Esparcimiento de Virus
19.
ACS Appl Mater Interfaces ; 9(41): 35673-35682, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28937214

RESUMEN

In this work, we have synthesized a thermoresponsive copolymer, alginate-g-poly(N-isopropylacrylamide) (alginate-g-PNIPAAm) by conjugating PNIPAAm to alginate, where PNIPAAm with different molecular weights and narrow molecular weight distribution was synthesized by atomic transfer radical polymerization. The copolymer dissolved in water or phosphate-buffered saline buffer solution at room temperature and formed self-assembled micelles with low critical micellization concentrations when the temperature increased to above their critical micellization temperatures. At higher concentration, that is, 7.4 wt % in water, the copolymer formed solutions at 25 °C and turned into thermosensitive hydrogels when temperature increased to the body temperature (37 °C). Herein, we hypothesized that the thermoresponsive hydrogels could produce self-assembled micelles with the dissolution of the alginate-g-PNIPAAm hydrogels in a biological fluid or drug release medium. If the drug was hydrophobic, the hydrogel eventually could release and produce drug-encapsulated micelles. In our experiments, we loaded the anticancer drug doxorubicin (DOX) into the alginate-g-PNIPAAm hydrogels and demonstrated that the hydrogels released DOX-encapsulated micelles in a sustained manner. The slowly released DOX-loaded micelles enhanced the cellular uptake of DOX in multidrug resistant AT3B-1 cells, showing the effect of overcoming the drug resistance and achieving better efficiency for killing the cancer cells. Therefore, the injectable thermoresponsive hydrogels formed by alginate-g-PNIPAAm and loaded with DOX turned into a smart drug delivery system, releasing DOX-encapsulated micelles in a sustained manner, showing great potential for overcoming the drug resistance in cancer therapy.


Asunto(s)
Hidrogeles/química , Resinas Acrílicas , Ácido Algínico , Doxorrubicina , Sistemas de Liberación de Medicamentos , Micelas , Temperatura
20.
J Colloid Interface Sci ; 490: 372-379, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27914336

RESUMEN

Chemotherapy is facing several limitations such as low water solubility of anticancer drugs and multidrug resistance (MDR) in cancer cells. To overcome these limitations, a thermoresponsive micellar drug delivery system formed by a non-covalently connected supramolecular block polymer was developed. The system is based on the host-guest interaction between a well-defined ß-cyclodextrin (ß-CD) based poly(N-isopropylacrylamide) star host polymer and an adamantyl-containing poly(ethylene glycol) (Ad-PEG) guest polymer. The structures of the host and guest polymers were characterized by 1H and 13C NMR, GPC and FTIR. Subsequently, they formed a pseudo-block copolymer via inclusion complexation between ß-CD core and adamantyl-moiety, which was confirmed by 2D NMR. The thermoresponsive micellization of the copolymer was investigated by UV-vis spectroscopy, DLS and TEM. At 37°C, the copolymer at a concentration of 0.2mg/mL in PBS formed micelles with a hydrodynamic diameter of ca. 282nm. The anticancer drug, doxorubicin (DOX), was successfully loaded into the core of the micelles with a loading level of 6% and loading efficiency of 17%. The blank polymer micelles showed good biocompatibility in cell cytotoxicity studies. Moreover, the DOX-loaded micelles demonstrated superior therapeutic effects in AT3B-1-N (MDR-) and AT3B-1 (MDR+) cell lines as compared to free DOX control, overcoming MDR in cancer cells.


Asunto(s)
Resinas Acrílicas/química , Adamantano/análogos & derivados , Adamantano/química , Antibióticos Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Doxorrubicina/administración & dosificación , beta-Ciclodextrinas/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Micelas , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA