Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 35(7): 2654-2677, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043544

RESUMEN

Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Mutación Puntual , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Pared Celular/metabolismo , Plantones/metabolismo , Celulosa/metabolismo
2.
Plant Cell ; 32(7): 2141-2157, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32327535

RESUMEN

Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Celulosa/biosíntesis , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Glucosiltransferasas/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Plantas Modificadas Genéticamente , Conformación Proteica
3.
Plant Physiol ; 179(4): 1537-1555, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30705068

RESUMEN

In plants, cellulose is synthesized at the cell surface by plasma membrane (PM)-localized cellulose synthase (CESA) complexes (CSCs). The molecular and cellular mechanisms that underpin delivery of CSCs to the PM, however, are poorly understood. Cortical microtubules have been shown to interact with CESA-containing compartments and mark the site for CSC delivery, but are not required for the delivery itself. Here, we demonstrate that myosin XI and the actin cytoskeleton mediate CSC delivery to the PM by coordinating the exocytosis of CESA-containing compartments. Measurement of cellulose content indicated that cellulose biosynthesis was significantly reduced in a myosin xik xi1 xi2 triple-knockout mutant. By combining genetic and pharmacological disruption of myosin activity with quantitative live-cell imaging, we observed decreased abundance of PM-localized CSCs and reduced delivery rate of CSCs in myosin-deficient cells. These phenotypes correlated with a significant increase in failed vesicle secretion events at the PM as well as an abnormal accumulation of CESA-containing compartments at the cell cortex. Through high-resolution spatiotemporal assays of cortical vesicle behavior, we identified defects in CSC vesicle tethering and fusion at the PM. Furthermore, disruption of myosin activity reduced the delivery of several other secretory markers to the PM and reduced constitutive and receptor-mediated endocytosis. These findings reveal a previously undescribed role for myosin in vesicle secretion and cellulose production at the cytoskeleton-PM-cell wall nexus.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Exocitosis , Glucosiltransferasas/metabolismo , Miosinas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular , Celulosa/metabolismo , Citoplasma/metabolismo , Técnicas de Inactivación de Genes , Modelos Moleculares , Miosinas/genética , Miosinas/metabolismo
4.
J Cell Biol ; 174(2): 221-9, 2006 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-16831890

RESUMEN

Self-incompatibility (SI) prevents inbreeding through specific recognition and rejection of incompatible pollen. In incompatible Papaver rhoeas pollen, SI triggers a Ca2+ signaling cascade, resulting in the inhibition of tip growth, actin depolymerization, and programmed cell death (PCD). We investigated whether actin dynamics were implicated in regulating PCD. Using the actin-stabilizing and depolymerizing drugs jasplakinolide (Jasp) and latrunculin B, we demonstrate that changes in actin filament levels or dynamics play a functional role in initiating PCD in P. rhoeas pollen, triggering a caspase-3-like activity. Significantly, SI-induced PCD in incompatible pollen was alleviated by pretreatment with Jasp. This represents the first account of a specific causal link between actin polymerization status and initiation of PCD in a plant cell and significantly advances our understanding of the mechanisms involved in SI.


Asunto(s)
Actinas/metabolismo , Apoptosis , Papaver/citología , Polen/citología , Polen/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Actinas/química , Apoptosis/efectos de los fármacos , Biopolímeros/química , Biopolímeros/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Caspasa 3 , Caspasas/metabolismo , Depsipéptidos/farmacología , Papaver/efectos de los fármacos , Papaver/metabolismo , Polen/efectos de los fármacos , Polen/crecimiento & desarrollo , Tiazoles/farmacología , Tiazolidinas
5.
Plant Cell Physiol ; 46(10): 1690-703, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16100394

RESUMEN

From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Microfilamentos/metabolismo , Plantas/metabolismo , Biopolímeros , Western Blotting , Cromatografía de Afinidad , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Profilinas/metabolismo , Unión Proteica
6.
J Biol Chem ; 278(45): 44832-42, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12947123

RESUMEN

The precise regulation of actin filament polymerization and depolymerization is essential for many cellular processes and is choreographed by a multitude of actin-binding proteins (ABPs). In higher plants the number of well characterized ABPs is quite limited, and some evidence points to significant differences in the biochemical properties of apparently conserved proteins. Here we provide the first evidence for the existence and biochemical properties of a heterodimeric capping protein from Arabidopsis thaliana (AtCP). The purified recombinant protein binds to actin filament barbed ends with Kd values of 12-24 nM, as assayed both kinetically and at steady state. AtCP prevents the addition of profilin actin to barbed ends during a seeded elongation reaction and suppresses dilution-mediated depolymerization. It does not, however, sever actin filaments and does not have a preference for the source of actin. During assembly from Mg-ATP-actin monomers, AtCP eliminates the initial lag period for actin polymerization and increases the maximum rate of polymerization. Indeed, the efficiency of actin nucleation of 0.042 pointed ends created per AtCP polypeptide compares favorably with mouse CapZ, which has a maximal nucleation of 0.17 pointed ends per CapZ polypeptide. AtCP activity is not affected by calcium but is sensitive to phosphatidylinositol 4,5-bisphosphate. We propose that AtCP is a major regulator of actin dynamics in plant cells that, together with abundant profilin, is responsible for maintaining a large pool of actin subunits and a surprisingly small population of F-actin.


Asunto(s)
Actinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/fisiología , Factores Despolimerizantes de la Actina , Actinas/química , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteína CapZ , Fenómenos Químicos , Química Física , ADN Complementario/química , Destrina , Expresión Génica , Punto Isoeléctrico , Proteínas de Microfilamentos/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis , Fosfatidilinositol 4,5-Difosfato/farmacología , Polímeros/química , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes , Alineación de Secuencia , Relación Estructura-Actividad
7.
Plant Cell ; 14(10): 2613-26, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12368508

RESUMEN

Signal perception and the integration of signals into networks that effect cellular changes is essential for all cells. The self-incompatibility (SI) response in field poppy pollen triggers a Ca(2+)-dependent signaling cascade that results in the inhibition of incompatible pollen. SI also stimulates dramatic alterations in the actin cytoskeleton. By measuring the amount of filamentous (F-) actin in pollen before and during the SI response, we demonstrate that SI stimulates a rapid and large reduction in F-actin level that is sustained for at least 1 h. This represents quantitative evidence for stimulus-mediated depolymerization of F-actin in plant cells by a defined biological stimulus. Surprisingly, there are remarkably few examples of sustained reductions in F-actin levels stimulated by a biologically relevant ligand. Actin depolymerization also was achieved in pollen by treatments that increase cytosolic free Ca(2+) artificially, providing evidence that actin is a target for the Ca(2+) signals triggered by the SI response. By determining the cellular concentrations and binding constants for native profilin from poppy pollen, we show that profilin has Ca(2+)-dependent monomeric actin-sequestering activity. Although profilin is likely to contribute to stimulus-mediated actin depolymerization, our data suggest a role for additional actin binding proteins. We propose that Ca(2+)-mediated depolymerization of F-actin may be a mechanism whereby SI-induced tip growth inhibition is achieved.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Proteínas Contráctiles , Polen/metabolismo , Transducción de Señal/fisiología , Citoesqueleto/metabolismo , Citosol/metabolismo , Fertilidad , Flores/química , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Microfilamentos/metabolismo , Papaver/química , Papaver/crecimiento & desarrollo , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Polen/química , Polen/crecimiento & desarrollo , Polímeros/metabolismo , Profilinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA