Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(32): 12019-12032, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527154

RESUMEN

Many rivers are polluted with macro (>5 mm)- and microplastics (<5 mm). We assess plastic pollution in rivers from crop production and urbanization in 395 Chinese sub-basins. We develop and evaluate an integrated model (MARINA-Plastics model, China-1.0) that considers plastics in crop production (plastic films from mulching and greenhouses, diffuse sources), sewage systems (point sources), and mismanaged solid waste (diffuse source). Model results indicated that 716 kton of plastics entered Chinese rivers in 2015. Macroplastics in rivers account for 85% of the total amount of plastics (in mass). Around 71% of this total plastic is from about one-fifth of the basin area. These sub-basins are located in central and eastern China, and they are densely populated with intensive agricultural activities. Agricultural plastic films contribute 20% to plastics in Chinese rivers. Moreover, 65% of plastics are from mismanaged waste in urban and rural areas. Sewage is responsible for the majority of microplastics in rivers. Our study could support the design of plastic pollution control policies and thus contribute to green development in China and elsewhere.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Ríos , Microplásticos , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Urbanización , Monitoreo del Ambiente/métodos , Producción de Cultivos , China
2.
Mar Pollut Bull ; 198: 115902, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101060

RESUMEN

Worldwide, coastal waters contain pollutants such as nutrients, plastics, and chemicals. Rivers export those pollutants, but their sources are not well studied. Our study aims to quantify river exports of nutrients, chemicals, and plastics to coastal waters by source and sub-basin worldwide. We developed a new MARINA-Multi model for 10,226 sub-basins. The global modelled river export to seas is approximately 40,000 kton of nitrogen, 1,800 kton of phosphorous, 45 kton of microplastics, 490 kton of macroplastics, 400 ton of triclosan and 220 ton of diclofenac. Around three-quarters of these pollutants are transported to the Atlantic and Pacific oceans. Diffuse sources contribute by 95-100 % to nitrogen (agriculture) and macroplastics (mismanaged waste) in seas. Point sources (sewage) contribute by 40-95 % to phosphorus and microplastics in seas. Almost 45 % of global sub-basin areas are multi-pollutant hotspots hosting 89 % of the global population. Our findings could support strategies for reducing multiple pollutants in seas.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Plásticos , Microplásticos , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Ríos , Nutrientes
3.
Ambio ; 52(2): 339-356, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36074247

RESUMEN

The population in the Black Sea region is expected to decline in the future. However, a better understanding of how river pollution is affected by declining trends in population and increasing trends in economic developments and urbanization is needed. This study aims to quantify future trends in point-source emissions of nutrients, microplastics, Cryptosporidium, and triclosan to 107 rivers draining into the Black Sea. We apply a multi-pollutant model for 2010, 2050, and 2100. In the future, over half of the rivers will be more polluted than in 2010. The population in 74 sub-basins may drop by over 25% in our economic scenario with poor wastewater treatment. Over two-thirds of the people will live in cities and the economy may grow 9-fold in the region. Advanced wastewater treatment could minimize trade-offs between economy and pollution: our Sustainability scenario projects a 68-98% decline in point-source pollution by 2100. Making this future reality will require coordinated international efforts.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Contaminantes Químicos del Agua , Humanos , Ríos , Plásticos , Mar Negro , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , China
4.
Mar Pollut Bull ; 178: 113633, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398693

RESUMEN

The Black Sea receives increasing amounts of microplastics from rivers. In this study, we explore options to reduce future river export of microplastics to the Black Sea. We develop five scenarios with different reduction options and implement them to a Model to Assess River Inputs of pollutaNts to seA (MARINA-Global) for 107 sub-basins. Today, European rivers draining into the Black Sea export over half of the total microplastics. In 2050, Asian rivers draining into the sea will be responsible for 34-46% of microplastic pollution. Implemented advanced treatment will reduce point-source pollution. Reduced consumption or more collection of plastics will reduce 40% of microplastics in the sea by 2050. In the optimistic future, sea pollution is 84% lower than today when the abovementioned reduction options are combined. Reduction options affect the share of pollution sources. Our insights could support environmental policies for a zero pollution future of the Black Sea.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Mar Negro , Monitoreo del Ambiente , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 777: 146105, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33677299

RESUMEN

Water pollution is a serious problem in China. This study focuses on equality in pollution control in the Yangtze, Yellow and Pearl. We first quantified environmental targets for nitrogen (N) and phosphorus (P) at the river mouth. We used the Indicator for Coastal Eutrophication Potential and the Model to Assess River Inputs of Nutrients to seAs (MARINA) to project river export of nutrients. Next, we allocated the environmental targets to sub-basins as allowable levels, based on a Gini optimization approach. We searched for minimum inequality in pollution per unit of GDP, population, basin area, and agricultural area. Our results indicate that without pollution control, the river export of nutrients in 2050 exceed allowable levels. To meet the allowable levels while striving for equality, total dissolved N and P exports from sub-basins need to be reduced by 60 to 97%. The required reductions are largest for sub-basins of the Yellow River. For P, reducing point source inputs to rivers (manure and sewage) may be enough to avoid that allowable levels are exceeded in many sub-basins. For N, more needs to be done. Some sub-basins need to reduce their pollution more than others. Equality considerations call for reducing both point (e.g. recycling manure resources on the land) and diffuse (improve nutrient use efficiencies in agriculture) sources of N in the rivers. Our study is the first to link a Gini based optimization approach with the MARINA model. It may support decision making aimed at cleaner production and at equality in pollution control.

6.
Sci Total Environ ; 694: 133629, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756824

RESUMEN

The Indus River Basin faces severe water quality degradation because of nutrient enrichment from human activities. Excessive nutrients in tributaries are transported to the river mouth, causing coastal eutrophication. This situation may worsen in the future because of population growth, economic development, and climate change. This study aims at a better understanding of the magnitude and sources of current (2010) and future (2050) river export of total dissolved nitrogen (TDN) by the Indus River at the sub-basin scale. To do this, we implemented the MARINA 1.0 model (Model to Assess River Inputs of Nutrients to seAs). The model inputs for human activities (e.g., agriculture, land use) were mainly from the GLOBIOM (Global Biosphere Management Model) and EPIC (Environmental Policy Integrated Model) models. Model inputs for hydrology were from the Community WATer Model (CWATM). For 2050, three scenarios combining Shared Socio-economic Pathways (SSPs 1, 2 and 3) and Representative Concentration Pathways (RCPs 2.6 and 6.0) were selected. A novelty of this study is the sub-basin analysis of future N export by the Indus River for SSPs and RCPs. Result shows that river export of TDN by the Indus River will increase by a factor of 1.6-2 between 2010 and 2050 under the three scenarios. >90% of the dissolved N exported by the Indus River is from midstream sub-basins. Human waste is expected to be the major source, and contributes by 66-70% to river export of TDN in 2050 depending on the scenarios. Another important source is agriculture, which contributes by 21-29% to dissolved inorganic N export in 2050. Thus a combined reduction in both diffuse and point sources in the midstream sub-basins can be effective to reduce coastal water pollution by nutrients at the river mouth of Indus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA