Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Chem Soc ; 136(31): 11085-92, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25020134

RESUMEN

pH is an important physiological parameter that plays a critical role in cellular and tissue homeostasis. Conventional small molecular pH sensors (e.g., fluorescein, Lysosensor) are limited by broad pH response and restricted fluorescent emissions. Previously, we reported the development of ultra-pH-sensitive (UPS) nanoprobes with sharp pH response using fluorophores with small Stokes shifts (<40 nm). In this study, we expand the UPS design to a library of nanoprobes with operator-predetermined pH transitions and wide fluorescent emissions (400-820 nm). A copolymer strategy was employed to fine tune the hydrophobicity of the ionizable hydrophobic block, which led to a desired transition pH based on standard curves. Interestingly, matching the hydrophobicity of the monomers was critical to achieve a sharp pH transition. To overcome the fluorophore limitations, we introduced copolymers conjugated with fluorescence quenchers (FQs). In the micelle state, the FQs effectively suppressed the emission of fluorophores regardless of their Stokes shifts and further increased the fluorescence activation ratios. As a proof of concept, we generated a library of 10 nanoprobes each encoded with a unique fluorophore. The nanoprobes cover the entire physiologic range of pH (4-7.4) with 0.3 pH increments. Each nanoprobe maintained a sharp pH transition (on/off < 0.25 pH) and high fluorescence activation ratio (>50-fold between on and off states). The UPS library provides a useful toolkit to study pH regulation in many pathophysiological indications (e.g., cancer, lysosome catabolism) as well as establishing tumor-activatable systems for cancer imaging and drug delivery.


Asunto(s)
Colorantes Fluorescentes/química , Nanoestructuras/química , Concentración de Iones de Hidrógeno , Polimerizacion , Polímeros/química , Espectrometría de Fluorescencia
2.
Int J Pharm ; 554: 212-223, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30408532

RESUMEN

Nanoparticles (NPs) can be used to locally deliver anti-restenosis drugs when they are infused directly to the injured arteries after intervention procedures such as angioplasty. However, the efficacy of transferring NPs via infusion to the arterial wall is limited, at least partially, due to poor NP retention on the inner artery wall. To improve NP retention, angioplasty balloons coated with drug-loaded NPs were fabricated via either layer-by-layer (LbL) electrostatic coating or acrylic-based hydrogel (AAH) coating techniques. Three types of NPs, namely poly (lactide-co-glycolide) (PLGA), biodegradable photo-luminescent PLGA and urethane doped polyester were studied. The transfer efficacy of NPs from various coatings to the arterial wall were further evaluated to find the optimal coating conditions. The ex vivo NP transfer studies showed significantly more NPs being transferred to the rat arterial wall after the angioplasty procedure by the AAH coating (95% transfer efficiency) compared to that of the LbL technique (60%) and dip coating (20%) under flow conditions (10 dyn/cm2). Our results suggest that the AAH coating of drug-loaded NPs on the angioplasty balloon could potentially provide superior retention of drug-loaded NPs onto the arterial wall for a better local delivery of drug-loaded NPs to effectively treat arterial diseases.


Asunto(s)
Angioplastia Coronaria con Balón/métodos , Reestenosis Coronaria/prevención & control , Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Arterias/metabolismo , Enfermedades Cardiovasculares/terapia , Sustancias Luminiscentes/química , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Uretano/química
3.
J Cardiovasc Transl Res ; 6(4): 570-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23640308

RESUMEN

Endothelial cell (EC) activation and inflammation is a key step in the initiation and progression of many cardiovascular diseases. Targeted delivery of therapeutic reagents to inflamed EC using nanoparticles is challenging as nanoparticles do not arrest on EC efficiently under high shear stress. In this study, we developed a novel polymeric platelet-mimicking nanoparticle for strong particle adhesion onto ECs and enhanced particle internalization by ECs. This nanoparticle was encapsulated with dexamethasone as the anti-inflammatory drug, and conjugated with polyethylene glycol, glycoprotein 1b, and trans-activating transcriptional peptide. The multi-ligand nanoparticle showed significantly greater adhesion on P-selectin, von Willebrand Factor, than the unmodified particles, and activated EC in vitro under both static and flow conditions. Treatment of injured rat carotid arteries with these multi-ligand nanoparticles suppressed neointimal stenosis more than unconjugated nanoparticles did. These results indicate that this novel multi-ligand nanoparticle is efficient to target inflamed EC and inhibit inflammation and subsequent stenosis.


Asunto(s)
Antiinflamatorios/farmacología , Dexametasona/farmacología , Portadores de Fármacos , Células Endoteliales/efectos de los fármacos , Ácido Láctico/metabolismo , Nanopartículas , Ácido Poliglicólico/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/efectos de los fármacos , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Estenosis Carotídea/prevención & control , Células Cultivadas , Dexametasona/química , Dexametasona/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Ácido Láctico/química , Ligandos , Neointima , Selectina-P/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-Dawley , Factor de von Willebrand/metabolismo
4.
Acta Biomater ; 9(12): 9351-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23917148

RESUMEN

The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.


Asunto(s)
Nanofibras/química , Proteínas Proto-Oncogénicas c-sis/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Cicatrización de Heridas/efectos de los fármacos , Adulto , Animales , Antibacterianos/farmacología , Becaplermina , Proliferación Celular/efectos de los fármacos , Quitosano/química , Colágeno/metabolismo , Preparaciones de Acción Retardada/farmacología , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nanofibras/ultraestructura , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA