RESUMEN
Optical coherence tomography (OCT) is a noninvasive, high-resolution, cross-sectional imaging technique. To date, OCT has been demonstrated in several areas of dentistry, primarily using wavelengths around 1,300 nm, low numerical aperture (NA) imaging lenses, and detectors insensitive to the polarization of light. The objective of this study is to compare the performance of three commercially available OCT systems operating with alternative wavelengths, imaging lenses, and detectors for OCT imaging of dental enamel. Spectral-domain (SD) OCT systems with (i) 840 nm (Lumedica, OQ LabScope 1.0), (ii) 1,300 nm (Thorlabs, Tel320) center wavelengths, and (iii) a swept-source (SS) OCT system (Thorlabs OCS1300SS) centered at 1,325 nm with optional polarization-sensitive detection were used. Low NA (0.04) and high NA (0.15) imaging lenses were used with system (iii). Healthy in vivo and in vitrohuman enamel and eroded in vitro bovine enamel specimens were imaged. The Tel320 system achieved greater imaging depth than the OQ LabScope 1.0, on average imaging 2.6 times deeper into the tooth (n = 10). The low NA lens provided a larger field of view and depth of focus, while the high NA lens provided higher lateral resolution and greater contrast. Polarization-sensitive imaging eliminated birefringent banding artifacts that can appear in conventional OCT scans. In summary, this study illustrates the performance of three commercially available OCT systems, objective lenses, and imaging modes and how these can affect imaging depth, resolution, field of view, and contrast in enamel. Users investigating OCT for dental applications should consider these factors when selecting an OCT system for clinical or basic science studies.
Asunto(s)
Tomografía de Coherencia Óptica , Animales , Bovinos , Esmalte Dental/diagnóstico por imagen , DurezaRESUMEN
BACKGROUND AND OBJECTIVES: Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source. This often results in the formation of marginal gaps, causing pain and damage to the restoration site. In this study, we demonstrate the capabilities of a correlation method applied using a multiple references optical coherence tomography (MR-OCT) architecture to monitor the curing of the resin. STUDY DESIGN/MATERIALS AND METHODS: A MR-OCT system is used in this study to monitor the curing of the resin. The system operates at the center wavelength of 1310 nm with an A-scan rate of 1200 A-scans per second. The axial and lateral resolution of the system is â¼13 µm and â¼27 µm. The method to determine the intensity correlation between adjacent B-frames is based on the Pearson correlation coefficient for a region of interest. Calculating the correlation coefficient for multiple B-frames related to the first B-frame at regular spaced time points, shows for a noncured resin a reduction of the correlation coefficient over time due to Brownian motion. The time constant of the reduction of the correlation value is a measure for the progress of the polymerization during LED light irradiation of the resin. The proposed approach is potentially a low-cost, powerful and unique optical imaging modality for measuring the curing behavior of dental resin and other resins, coatings, and adhesives in medical and industrial applications. RESULTS: To demonstrate the proposed method to monitor the curing process, a light-activated resin composite from GRADIA DIRECT ANTERIOR (GC Corporation, Japan) is studied. The curing time of resin was measured and monitored as a function of depth. The correlation coefficient method is highly sensitive to Brownian motion. The process of curing results in a change in intensity as measured by the MR-OCT signal and hence can be monitored using this method. CONCLUSIONS: These results show that MR-OCT has the potential to measure the curing time and monitor the curing process as a function of depth. Moreover, MR-OCT as a product has potential to be compact, low-cost and to fit into a smartphone. Using such a device for monitoring the curing of the resin will be suitable for dentists in stationary and mobile clinical settings.
Asunto(s)
Resinas Compuestas/farmacocinética , Luces de Curación Dental , Tomografía de Coherencia ÓpticaRESUMEN
Significance: Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time. Aim: A hyperspectral camera was used to capture 1216 × 1936 pixel wide-field reflectance images of in vivo human tissue at 205 wavelength bands from 420 to 830 nm. Approach: The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin, and scattering were used with multi-layer Monte Carlo models to generate simulated diffuse reflectance spectra for 24,000 random combinations of physiologically relevant tissue components. These spectra were then used to train an artificial neural network (ANN) to predict tissue component concentrations from an input reflectance spectrum. Results: The ANN achieved low root mean square errors in a test set of 6000 independent simulated diffuse reflectance spectra while calculating concentration values more than 4000× faster than a conventional iterative least squares approach. Conclusions: In vivo finger occlusion and gingival abrasion studies demonstrate the ability of this approach to rapidly generate high-resolution images of tissue component concentrations from a hyperspectral dataset acquired from human subjects.
Asunto(s)
Aprendizaje Profundo , Hemoglobinas , Imágenes Hiperespectrales , Melaninas , Humanos , Melaninas/análisis , Melaninas/química , Hemoglobinas/análisis , Imágenes Hiperespectrales/métodos , Método de Montecarlo , Dispersión de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Redes Neurales de la Computación , Dedos/diagnóstico por imagenRESUMEN
We describe a functional imaging paradigm that uses photothermal optical coherence tomography (PT-OCT) to detect indocyanine green (ICG)-encapsulated biocompatible poly(lactic-co-glycolic) acid (PLGA) nanoparticles embedded in highly scattering tissue phantoms with high resolution and sensitivity. The ICG-loaded PLGA nanoparticles were fabricated using a modified emulsification solvent diffusion method. With a 20 kHz axial scan rate, PT-OCT based on spectral-domain interferometric configuration at 1310 nm was used to detect phase changes induced by a 808 nm photothermal excitation of ICG-encapsulated PLGA nanoparticles. An algorithm based on Fourier transform analysis of differential phase of the spectral interferogram was developed for detecting the depth resolved localized photothermal signal. Excellent contrast difference was observed with PT-OCT between phantoms containing different concentrations of ICG-encapsulated PLGA nanoparticles. This technique has the potential to provide simultaneous structural and molecular-targeted imaging with excellent signal-to-noise for various clinical applications.
Asunto(s)
Materiales Biocompatibles/química , Verde de Indocianina/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Tomografía de Coherencia Óptica/métodos , Estudios de Factibilidad , Fantasmas de Imagen , Copolímero de Ácido Poliláctico-Ácido PoliglicólicoRESUMEN
This investigation aimed to quantitatively measure the changes in inflammation of subjects with healthy and unhealthy gums during a period of induced gingivitis. A total of 30 subjects (15 healthy, 15 with gum inflammation) were enlisted and given oral exams by a dental hygienist. Baseline measurements were acquired before a 3-week period of oral hygiene abstinence. The lobene modified gingival index scoring was used for inflammation scoring and hyperspectral spatial frequency domain imaging was used to quantitatively measure oxy- and deoxygenated blood volume fraction at two time points: at Baseline and after 3 weeks of oral hygiene abstinence. We found that abstaining from oral hygiene causes a near proportional increase in oxygenated and deoxygenated blood volume fraction for healthy individuals. For individuals who started the study with mild to moderate gingivitis, increases in blood volume were mainly due to deoxygenated blood.
Asunto(s)
Gingivitis , Humanos , Índice Periodontal , Inflamación/complicaciones , Índice de Placa DentalRESUMEN
There remains a clinical need for an accurate and non-invasive imaging tool for intraoral evaluation of dental conditions. Optical coherence tomography (OCT) is a potential candidate to meet this need, but the design of current OCT systems limits their utility in the intraoral examinations. The inclusion of light-induced autofluorescence (LIAF) can expedite the image collection process and provides a large field of view for viewing the condition of oral tissues. This study describes a novel LIAF-OCT system equipped with a handheld probe designed for intraoral examination of microstructural (via OCT) and microvascular information (via OCT angiography, OCTA). The handheld probe is optimized for use in clinical studies, maintaining the ability to detect and image changes in the condition of oral tissue (e.g., hard tissue damage, presence of dental restorations, plaque, and tooth stains). The real-time LIAF provides guidance for OCT imaging to achieve a field of view of approximately 6.9 mm × 7.8 mm, and a penetration depth of 1.5 mm to 3 mm depending on the scattering property of the target oral tissue. We demonstrate that the proposed system is successful in capturing reliable depth-resolved images from occlusal and palatal surfaces and offers added design features that can enhance its usability in clinical settings.
RESUMEN
Due to rod-like hydroxyapatite crystal organizations, dental enamel is optically anisotropic, i.e., birefringent. Healthy enamel is known to be intrinsically negatively birefringent. However, when demineralization of enamel occurs, a considerable number of inter-crystallite spaces would be created between the crystallites in the enamel, which could lead to a sign reversion in birefringence of the enamel structure. We propose that this sign reversion can be leveraged in polarization sensitive OCT (PSOCT) imaging to differentiate early caries lesions from healthy enamel. In this study using PSOCT, we first confirm that the change in birefringence sign (negative to positive) can lead to a 90-degree alteration in the local axis orientation because of the switch between the fast and slow optic axes. We then demonstrate, for the first time, that the local axis orientation can be utilized to map and visualize the WSLs from the healthy enamel with a unique contrast. Moreover, the sharp alteration in local axis orientation gives a clear boundary between the WSLs and the healthy enamel, providing an opportunity to automatically segment the three-dimensional WSLs from the healthy enamel, enabling the characterization of their size and depth information in an intuitive way, which may aid clinical decision making and treatment planning.
RESUMEN
A multimodal, hyperspectral imaging system was built for diagnostics of oral tissues. The system, termed Hyperspectral-Fluorescence-Spatial Frequency Domain Imaging (Hy-F-SFDI), combines the principles of spatial frequency domain imaging, quantitative light fluorescence, and CIELAB color measurement. Hy-F-SFDI employs a compact LED projector, excitation LED, and a 16 channel hyperspectral camera mounted on a custom platform for tissue imaging. A two layer Monte Carlo approach was used to generate a reference table for quick tissue analysis. To demonstrate the clinical capabilities of Hy-F-SFDI, we used the system to quantify gingival tissue hemoglobin volume fraction, detect caries, bacterial activity, and measure tooth color of a volunteer at different time points. Hy-F-SFDI was able to measure quantitative changes in tissue parameters.
RESUMEN
Gingivitis is highly prevalent in adults, and if left untreated, can progress to periodontitis. In this article, we present an interesting case study where the resolution of gingivitis was followed over a period of 10 days using optical coherence tomography (OCT) and light-induced autofluorescence (LIAF). We demonstrate that OCT and its functional angiography can distinctively capture the changes during the resolution of gingivitis; while LIAF can detect red-fluorescent signals associated with mature plaque present at the inflamed site. The acute inflammatory region showed evidence of angiogenesis based on the quantification of vessel density and number; while no angiogenesis was detected within the less inflamed region. Gingival thickness showed a reduction of 140 ± 26 µm on average, measured between the peak gingivitis event and the period wherein the inflammation was resolved. Vessels in the angiogenesis site was found to reduce exponentially. The mildly inflamed site showed a decreasing trend in the vessel size, which however was within the error of the measurement.
Asunto(s)
Gingivitis , Periodontitis , Adulto , Angiografía , Encía , Gingivitis/diagnóstico por imagen , Humanos , Tomografía de Coherencia ÓpticaRESUMEN
We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light-induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red-green-blue digital camera, with a 450 nm cut-on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT-LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time.
Asunto(s)
Angiografía , Tomografía de Coherencia Óptica , Microvasos , Imagen Molecular , Imagen MultimodalRESUMEN
The change in gingival tissue volume may be used to indicate changes in gingival inflammation, which may be useful for the clinical assessment of gingival health. Properly quantifying gingival tissue volume requires a robust technique for accurate registration and segmentation of longitudinally captured 3-dimensional (3D) images. In this paper, a semi-automated registration and segmentation method for micrometer resolution measurement of gingival-tissue volume is proposed for 3D optical coherence tomography (OCT) imaging. For quantification, relative changes in gingiva tissue volume are measured based on changes in the gingiva surface height using the tooth surface as a reference. This report conducted repeatability tests on this method drawn from repeated scans in one patient, indicating an error of the point cloud registration method for oral OCT imaging is 63.08 ± 4.52µm (1σ), and the measurement error of the gingival tissue average thickness is -3.40 ± 21.85µm (1σ).
RESUMEN
Gingiva is the soft tissue that surrounds and protects the teeth. Healthy gingiva provides an effective barrier to periodontal insults to deeper tissue, thus is an important indicator to a patient's periodontal health. Current methods in assessing gingival tissue health, including visual observation and physical examination with probing on the gingiva, are qualitative and subjective. They may become cumbersome when more complex cases are involved, such as variations in gingival biotypes where feature and thickness of the gingiva are considered. A noninvasive imaging technique providing depth-resolved structural and vascular information is necessary for an improved assessment of gingival tissue and more accurate diagnosis of periodontal status. We propose a three-dimensional (3D) imaging technique, optical coherence tomography (OCT), to perform in situ imaging on human gingiva. Ten volunteers (five male, five female, age 25-35) were recruited; and the labial gingival tissues of upper incisors were scanned using the combined use of state-of-the-art swept-source OCT and OCT angiography (OCTA). Information was collected describing the 3D tissue microstructure and capillary vasculature of the gingiva within a penetration depth of up to 2 mm. Results indicate significant structural and vascular differences between the two extreme gingival biotypes (ie, thick and thin gingiva), and demonstrate special features of vascular arrangement and characteristics in gingival inflammation. Within the limit of this study, the OCT/OCTA technique is feasible in quantifying different attributes of gingival biotypes and the severity of gingival inflammation.