Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884507

RESUMEN

Streptococcus pneumoniae is an important causative organism of respiratory tract infections. Although periodontal bacteria have been shown to influence respiratory infections such as aspiration pneumonia, the synergistic effect of S. pneumoniae and Porphyromonas gingivalis, a periodontopathic bacterium, on pneumococcal infections is unclear. To investigate whether P. gingivalis accelerates pneumococcal infections, we tested the effects of inoculating P. gingivalis culture supernatant (PgSup) into S. pneumoniae-infected mice. Mice were intratracheally injected with S. pneumoniae and PgSup to induce pneumonia, and lung histopathological sections and the absolute number and frequency of neutrophils and macrophages in the lung were analyzed. Proinflammatory cytokine/chemokine expression was examined by qPCR and ELISA. Inflammatory cell infiltration was observed in S. pneumoniae-infected mice and S. pnemoniae and PgSup mixed-infected mice, and mixed-infected mice showed more pronounced inflammation in lung. The ratios of monocytes/macrophages and neutrophils were not significantly different between the lungs of S. pneumoniae-infected mice and those of mixed-infected mice. PgSup synergistically increased TNF-α expression/production and IL-17 production compared with S. pneumoniae infection alone. We demonstrated that PgSup enhanced inflammation in pneumonia caused by S. pneumoniae, suggesting that virulence factors produced by P. gingivalis are involved in the exacerbation of respiratory tract infections such as aspiration pneumonia.


Asunto(s)
Infecciones por Bacteroidaceae/complicaciones , Inflamación/patología , Pulmón/patología , Infiltración Neutrófila/inmunología , Neumonía Neumocócica/patología , Porphyromonas gingivalis/fisiología , Streptococcus pneumoniae/fisiología , Animales , Infecciones por Bacteroidaceae/microbiología , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamación/etiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Neumonía Neumocócica/epidemiología , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología
2.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545509

RESUMEN

Titanium materials are essential treatment modalities in the medical field and serve as a tissue engineering scaffold and coating material for medical devices. Thus, there is a significant demand to improve the bioactivity of titanium for therapeutic and experimental purposes. We showed that ultraviolet light (UV)-pre-treatment changed the protein-adsorption ability and subsequent osteoconductivity of titanium. Fibronectin (FN) adsorption on UV-treated titanium was 20% and 30% greater after 1-min and 1-h incubation, respectively, than that of control titanium. After 3-h incubation, FN adsorption on UV-treated titanium remained 30% higher than that on the control. Osteoblasts were cultured on titanium disks after 1-h FN adsorption with or without UV-pre-treatment and on titanium disks without FN adsorption. The number of attached osteoblasts during the early stage of culture was 80% greater on UV-treated and FN-adsorbed (UV/FN) titanium than on FN-adsorbed (FN) titanium; osteoblasts attachment on UV/FN titanium was 2.6- and 2.1-fold greater than that on control- and UV-treated titanium, respectively. The alkaline phosphatase activity of osteoblasts on UV/FN titanium was increased 1.8-, 1.8-, and 2.4-fold compared with that on FN-adsorbed, UV-treated, and control titanium, respectively. The UV/FN implants exhibited 25% and 150% greater in vivo biomechanical strength of bone integration than the FN- and control implants, respectively. Bone morphogenetic protein-2 (BMP-2) adsorption on UV-treated titanium was 4.5-fold greater than that on control titanium after 1-min incubation, resulting in a 4-fold increase in osteoblast attachment. Thus, UV-pre-treatment of titanium accelerated its protein adsorptivity and osteoconductivity, providing a novel strategy for enhancing its bioactivity.


Asunto(s)
Sustitutos de Huesos/química , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Titanio/química , Adsorción , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Sustitutos de Huesos/efectos de la radiación , Adhesión Celular , Células Cultivadas , Fibronectinas/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Ratas , Propiedades de Superficie , Titanio/efectos de la radiación , Rayos Ultravioleta
3.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991761

RESUMEN

Titanium implants are the standard therapeutic option when restoring missing teeth and reconstructing fractured and/or diseased bone. However, in the 30 years since the advent of micro-rough surfaces, titanium's ability to integrate with bone has not improved significantly. We developed a method to create a unique titanium surface with distinct roughness features at meso-, micro-, and nano-scales. We sought to determine the biological ability of the surface and optimize it for better osseointegration. Commercially pure titanium was acid-etched with sulfuric acid at different temperatures (120, 130, 140, and 150 °C). Although only the typical micro-scale compartmental structure was formed during acid-etching at 120 and 130 °C, meso-scale spikes (20-50 µm wide) and nano-scale polymorphic structures as well as micro-scale compartmental structures formed exclusively at 140 and 150 °C. The average surface roughness (Ra) of the three-scale rough surface was 6-12 times greater than that with micro-roughness only, and did not compromise the initial attachment and spreading of osteoblasts despite its considerably increased surface roughness. The new surface promoted osteoblast differentiation and in vivo osseointegration significantly; regression analysis between osteoconductivity and surface variables revealed these effects were highly correlated with the size and density of meso-scale spikes. The overall strength of osseointegration was the greatest when the acid-etching was performed at 140 °C. Thus, we demonstrated that our meso-, micro-, and nano-scale rough titanium surface generates substantially increased osteoconductive and osseointegrative ability over the well-established micro-rough titanium surface. This novel surface is expected to be utilized in dental and various types of orthopedic surgical implants, as well as titanium-based bone engineering scaffolds.


Asunto(s)
Regeneración Ósea , Nanoestructuras/química , Oseointegración , Titanio/química , Animales , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Implantes Dentales , Masculino , Nanoestructuras/ultraestructura , Osteoblastos/citología , Osteoblastos/metabolismo , Prótesis e Implantes , Ratas , Propiedades de Superficie
4.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059603

RESUMEN

Effects of UV-photofunctionalization on bone-to-titanium integration under challenging systemic conditions remain unclear. We examined the behavior and response of osteoblasts from sham-operated and ovariectomized (OVX) rats on titanium surfaces with or without UV light pre-treatment and the strength of bone-implant integration. Osteoblasts from OVX rats showed significantly lower alkaline phosphatase, osteogenic gene expression, and mineralization activities than those from sham rats. Bone density variables in the spine were consistently lower in OVX rats. UV-treated titanium was superhydrophilic and the contact angle of ddH2O was ≤5°. Titanium without UV treatment was hydrophobic with a contact angle of ≥80°. Initial attachment to titanium, proliferation, alkaline phosphatase activity, and gene expression were significantly increased on UV-treated titanium compared to that on control titanium in osteoblasts from sham and OVX rats. Osteoblastic functions compromised by OVX were elevated to levels equivalent to or higher than those of sham-operated osteoblasts following culture on UV-treated titanium. The strength of in vivo bone-implant integration for UV-treated titanium was 80% higher than that of control titanium in OVX rats and even higher than that of control implants in sham-operated rats. Thus, UV-photofunctionalization effectively enhanced bone-implant integration in OVX rats to overcome post-menopausal osteoporosis-like conditions.


Asunto(s)
Implantes Dentales , Oseointegración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis , Titanio/farmacología , Titanio/efectos de la radiación , Rayos Ultravioleta , Fosfatasa Alcalina , Animales , Densidad Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Huesos , Calcificación Fisiológica/efectos de los fármacos , Proliferación Celular , Femenino , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/genética , Ovariectomía , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
5.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979313

RESUMEN

Titanium (Ti) is an osteoconductive material that is routinely used as a bulk implant to fix and restore bones and teeth. This study explored the effective use of Ti as a bone engineering scaffold. Challenges to overcome were: (1) difficult liquid/cell infiltration into Ti microfiber scaffolds due to the hydrophobic nature of Ti; and (2) difficult cell attachment on thin and curved Ti microfibers. A recent discovery of UV-photofunctionalization of Ti prompted us to examine its effect on Ti microfiber scaffolds. Scaffolds in disk form were made by weaving grade 4 pure Ti microfibers (125 µm diameter) and half of them were acid-etched to roughen the surface. Some of the scaffolds with original or acid-etched surfaces were further treated by UV light before cell culture. Ti microfiber scaffolds, regardless of the surface type, were hydrophobic and did not allow glycerol/water liquid to infiltrate, whereas, after UV treatment, the scaffolds became hydrophilic and immediately absorbed the liquid. Osteogenic cells from two different origins, derived from the femoral and mandibular bone marrow of rats, were cultured on the scaffolds. The number of cells attached to scaffolds during the early stage of culture within 24 h was 3-10 times greater when the scaffolds were treated with UV. The development of cytoplasmic projections and cytoskeletal, as well as the expression of focal adhesion protein, were exclusively observed on UV-treated scaffolds. Osteoblastic functional phenotypes, such as alkaline phosphatase activity and calcium mineralization, were 2-15 times greater on UV-treated scaffolds, with more pronounced enhancement on acid-etched scaffolds compared to that on the original scaffolds. These effects of UV treatment were associated with a significant reduction in atomic carbon on the Ti microfiber surfaces. In conclusion, UV treatment of Ti microfiber scaffolds tunes their physicochemical properties and effectively enhances the attachment and function of osteoblasts, proposing a new strategy for bone engineering.


Asunto(s)
Oseointegración , Osteoblastos/metabolismo , Andamios del Tejido/química , Titanio/efectos de la radiación , Animales , Células de la Médula Ósea/citología , Calcificación Fisiológica/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Fémur/citología , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Mandíbula/citología , Microscopía Electrónica de Rastreo , Osteoblastos/química , Osteoblastos/enzimología , Osteogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie/efectos de la radiación , Ingeniería de Tejidos , Titanio/química , Rayos Ultravioleta
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244335

RESUMEN

Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.


Asunto(s)
Cementos para Huesos/farmacología , Compuestos de Boro/farmacología , Radicales Libres/farmacología , Metacrilatos/farmacología , Metilmetacrilatos/farmacología , Osteogénesis/efectos de los fármacos , Animales , Artroplastia de Reemplazo de Cadera , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cementos para Huesos/química , Células de la Médula Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/patología , Boranos , Compuestos de Boro/química , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Radicales Libres/química , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ensayo de Materiales , Metacrilatos/química , Metilmetacrilato/química , Metilmetacrilatos/química , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/genética , Fenotipo , Polimerizacion , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Prótesis e Implantes , Ratas , Ratas Sprague-Dawley
7.
Am J Med Genet A ; 176(12): 2614-2622, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30575289

RESUMEN

Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is characterized by alterations of SATB2. Its clinical features include intellectual disability and craniofacial abnormalities, such as cleft palate, dysmorphic features, and dental abnormalities. Here, we describe three previously undiagnosed, unrelated patients with SAS who exhibited dental abnormalities, including multiple odontomas. Although isolated odontomas are common, multiple odontomas are rare. Individuals in families 1 and 3 underwent whole-exome sequencing. Patient 2 and parents underwent targeted amplicon sequencing. On the basis of the hg19/GRCh37 reference and the RefSeq mRNA NM_001172517, respective heterozygous mutations were found and validated in Patients 1, 2, and 3: a splice-site mutation (chr2:g.200137396C > T, c.1741-1G > A), a nonsense mutation (chr2:g.200213750G > A, c.847C > T, p.R283*), and a frame-shift mutations (chr2:g.200188589_200188590del, c.1478_1479del, p.Q493Rfs*19). All mutations occurred de novo. The mutations in Patients 1 and 3 were novel; the mutation in Patient 2 has been described previously. Tooth mesenchymal cells derived from Patient 2 showed diminished SATB2 expression. Multiple odontomas were evident in the patients in this report; however, this has not been recognized previously as a SAS-associated phenotype. We propose that multiple odontomas be considered as an occasional manifestation of SAS.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Odontoma/diagnóstico , Odontoma/genética , Fenotipo , Factores de Transcripción/genética , Adolescente , Alelos , Análisis Mutacional de ADN , Exones , Femenino , Genotipo , Humanos , Masculino , Mutación , Linaje , Síndrome , Secuenciación del Exoma , Adulto Joven
8.
Stem Cells Int ; 2024: 7685280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435089

RESUMEN

Purpose: The microenvironment is required for tissues to maintain their properties in vivo. This microenvironment encompasses the types and three-dimensional arrangement of cells forming the tissues, and their interactions with neighboring cells and extracellular matrices, as represented by the stem cell niche. Tissue regeneration depends not on the original tissue source of the transplanted cells, but on the microenvironment in which they are transplanted. We have previously reported pulp regeneration in a heterotopic root graft model by transplantation of conditioned medium alone, which suggests that host-derived cells expressing receptors for migration factors in conditioned medium migrate into the root canal and cause pulp regeneration. Regenerative medicine is needed to restore the original function of complex tissues. To achieve this, it is necessary to reproduce the changes in the microenvironment of the host tissue that accompany the regenerative response. Therefore, it is important to reproduce the microenvironment in vivo for further development of tissue regeneration therapy. Periostin is also found in the epithelial-mesenchymal junction, with expression sites that differ depending on the mineralized matrix stage, and is involved in regulation of calcification. Methods: We investigate whether periostin contributes to microenvironmental changes in regenerated pulp tissue. Dental pulp stem cells were induced into dentin, and gene expression of DSPP, nestin, DMP1, Runx2, and periostin was analyzed by qPCR and protein expression by IHC. Similarly, gene expression was analyzed using qPCR and protein expression using IHC in regenerated dental pulp obtained by ectopic transplantation. Results: Since these regenerated tissues were observable on the same slice, it was possible to understand changes in the microenvironment within the tissues. Conclusions: Periostin promoted proliferation of pulp stem cells, migration in type I collagen, and calcification in regenerated pulp, which strongly suggests that periostin is a promising candidate as a factor that contributes to the microenvironment of regenerated pulp.

9.
Int J Med Sci ; 10(10): 1271-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23983585

RESUMEN

The expression of HSP27 and some CKs were examined the 40 cases of typical solid/multicystic ameloblastoma using immunohistochemical techniques. In order to examine the relevance of HSP in cell differentiation, we focused on the cytoskeletal expression of CK. CK19 is a marker of typical odontogenic epithelium widely observed in follicular and plexiform types of ameloblastomas. Since staining with CK14 is one of the measures of the differentiation potential of squamous cells and is extensively expressed in both follicular and plexiform types, it implies that squamous differentiation of each type can occur. CK8 was strongly detected in tumor nests in plexiform type but weakly detected in follicular type. It was considered that the expression of HSP27 in plexiform type correlated with the expression of CK8 suggesting that HSP27 might have regulated the expression of CK8.


Asunto(s)
Ameloblastoma/metabolismo , Diferenciación Celular/fisiología , Proteínas de Choque Térmico HSP27/metabolismo , Adolescente , Adulto , Femenino , Humanos , Inmunohistoquímica , Masculino , Adulto Joven
10.
Cells ; 12(21)2023 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947620

RESUMEN

Soft tissue adhesion and sealing around dental and maxillofacial implants, related prosthetic components, and crowns are a clinical imperative to prevent adverse outcomes of periodontitis and periimplantitis. Zirconia is often used to fabricate implant components and crowns. Here, we hypothesized that UV treatment of zirconia would induce unique behaviors in fibroblasts that favor the establishment of a soft tissue seal. Human oral fibroblasts were cultured on zirconia specimens to confluency before placing a second zirconia specimen (either untreated or treated with one minute of 172 nm vacuum UV (VUV) light) next to the first specimen separated by a gap of 150 µm. After seven days of culture, fibroblasts only transmigrated onto VUV-treated zirconia, forming a 2.36 mm volume zone and 5.30 mm leading edge. Cells migrating on VUV-treated zirconia were enlarged, with robust formation of multidirectional cytoplastic projections, even on day seven. Fibroblasts were also cultured on horizontally placed and 45° and 60° tilted zirconia specimens, with the latter configurations compromising initial attachment and proliferation. However, VUV treatment of zirconia mitigated the negative impact of tilting, with higher tilt angles increasing the difference in cellular behavior between control and VUV-treated specimens. Fibroblast size, perimeter, and diameter on day seven were greater than on day one exclusively on VUV-treated zirconia. VUV treatment reduced surface elemental carbon and induced superhydrophilicity, confirming the removal of the hydrocarbon pellicle. Similar effects of VUV treatment were observed on glazed zirconia specimens with silica surfaces. One-minute VUV photofunctionalization of zirconia and silica therefore promotes human oral fibroblast attachment and proliferation, especially under challenging culture conditions, and induces specimen-to-specimen transmigration and sustainable photofunctionalization for at least seven days.


Asunto(s)
Fibroblastos , Dióxido de Silicio , Humanos , Propiedades de Superficie , Vacio
11.
Oral Radiol ; 37(3): 487-493, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32948938

RESUMEN

OBJECTIVES: This study aimed to examine the performance of deep learning object detection technology for detecting and identifying maxillary cyst-like lesions on panoramic radiography. METHODS: Altogether, 412 patients with maxillary cyst-like lesions (including several benign tumors) were enrolled. All panoramic radiographs were arbitrarily assigned to the training, testing 1, and testing 2 datasets of the study. The deep learning process of the training images and labels was performed for 1000 epochs using the DetectNet neural network. The testing 1 and testing 2 images were applied to the created learning model, and the detection performance was evaluated. For lesions that could be detected, the classification performance (sensitivity) for identifying radicular cysts or other lesions were examined. RESULTS: The recall, precision, and F-1 score for detecting maxillary cysts were 74.6%/77.1%, 89.8%/90.0%, and 81.5%/83.1% for the testing 1/testing 2 datasets, respectively. The recall was higher in the anterior regions and for radicular cysts. The sensitivity was higher for identifying radicular cysts than for other lesions. CONCLUSIONS: Using deep learning object detection technology, maxillary cyst-like lesions could be detected in approximately 75-77%.


Asunto(s)
Quistes , Aprendizaje Profundo , Humanos , Redes Neurales de la Computación , Radiografía Panorámica
12.
Life Sci ; 284: 119938, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506837

RESUMEN

AIMS: The relationship between stress to endoplasmic reticulum (ER) and periodontitis has been known, and ER stress induced by Porphyromonas gingivalis results in the loss of alveolar bone. Salubrinal is a small synthetic compound and attenuates ER stress through inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined whether salubrinal attenuates periodontitis in a mouse model of experimental periodontal disease. MATERIALS AND METHODS: We evaluated loss of alveolar bone and attachment levels in periodontium using micro-computed tomography (µCT) and hematoxylin-eosin (HE) staining, respectively. Furthermore, we measured osteoclast numbers using tartrate-resistant acid phosphatase (TRAP) staining and osteoblast numbers using HE staining for bone resorption and for bone formation, respectively. To examine the inhibitory effects of salubrinal against pro-inflammatory cytokines, we measured TNF-α and IL1-ß score in periodontium using immunohistostaining. KEY FINDINGS: The results revealed that salubrinal suppressed loss of alveolar bone and attachment levels in periodontium induced by periodontitis. It decreased osteoclast numbers and increased osteoblasts. It also suppressed the expression levels of TNF-α in periodontium. SIGNIFICANCE: These results show that salubrinal alleviates periodontitis through suppression of alveolar bone resorption and the pro-inflammatory cytokine, and promotion of the bone formation. Since salubrinal has been shown to have these beneficial effects for periodontal disease, it may provide a novel therapeutic possibility for the disease.


Asunto(s)
Pérdida de Hueso Alveolar/tratamiento farmacológico , Cinamatos/uso terapéutico , Tiourea/análogos & derivados , Pérdida de Hueso Alveolar/complicaciones , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Animales , Recuento de Células , Cinamatos/administración & dosificación , Cinamatos/farmacología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Periodontitis/complicaciones , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Tiourea/administración & dosificación , Tiourea/farmacología , Tiourea/uso terapéutico , Factor de Transcripción CHOP/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos X
13.
Int J Surg Case Rep ; 71: 132-138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32446993

RESUMEN

BACKGROUND: Odontogenic keratocyst (OKC) is the third most common odontogenic cyst which arises from cell rests of dental lamina, and usually observed in the jaws. Because OKC is noted for its high rate of recurrence, there are various treatment strategies. Here, we present a rare case of OKC which occupied the entire maxillary sinus and pterygoid process of the sphenoid bone extending nearly to the skull base. CASE PRESENTATION: The patient was a 21-year-old male and underwent surgical removal of the cyst using the Caldwell-Luc procedure which in this case extended the surgical approach to the pterygoid process of the sphenoid bone via the pterygomaxillary junction. However, we found a recurrent lesion in the posterior wall of the maxillary sinus 20 months after the surgery and subsequently performed a secondary cystectomy. Surgical specimens showed positive bcl-2 staining of OKC and negative cytokeratin-10 on immunohistochemistry for both primary and recurrent lesions. CONCLUSION: OKC rarely occurs in the maxillary sinus and extends to the deep maxillary structure and the skull base. In order to prevent recurrence, it is necessary to recognize the exact location of the entire lesion. Careful examination of preoperative CT images is needed to make a complete surgical planning and to perform a reliable surgical procedure.

14.
Mater Sci Eng C Mater Biol Appl ; 100: 165-177, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30948050

RESUMEN

The objective of this study was to examine behavior and function of osteoblasts on saliva-contaminated titanium and its potential improvement after UV light treatment. Acid-etched titanium disks were contaminated with human saliva. Osteoblasts derived from rat femur were cultured on contaminated and clean titanium disks. Contaminated disks further treated with UV light were also tested. The number of attached cells, the degree of cell spreading, and the expression of adhesion protein were significantly decreased on saliva-contaminated surfaces compared with clean surfaces. The gene expression of osteocalcin was also downregulated on contaminated surfaces, whereas ALP activity and mineralization were not significantly influenced. The impaired functions on contaminated surfaces were significantly increased if the surfaces were further treated with UV and even outperformed the ones on clean titanium surfaces. XPS analysis revealed that the atomic percentage of carbon and nitrogen detected on contaminated surfaces were substantially decreased after UV treatment. These results suggest that osteoblastic behavior and function were compromised on titanium surfaces contaminated with saliva. The compromised functions no longer happened if the surfaces were further treated with UV light, providing the basis to understand the effect of biological contamination on osseointegration and to explore UV treatment as a decontaminating technology.


Asunto(s)
Saliva/química , Titanio/química , Rayos Ultravioleta , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Humanos , Masculino , Microscopía Confocal , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Titanio/farmacología
15.
J Biomater Appl ; 30(2): 193-200, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25766035

RESUMEN

Atelocollagen sponges incorporating polyhedra encapsulating bone morphogenetic protein 2 (BMP-2) were implanted into lateral bone defects in the mandible. Half of the bone defects on the left side were treated with atelocollagen sponges containing 1.8 × 10(7) BMP-2 polyhedra, and half were treated with sponges containing 3.6 × 10(6) BMP-2 polyhedra. As controls, we treated the right-side bone defects in each animal with an atelocollagen sponge containing 5 µg of recombinant human BMP-2 (rhBMP-2) or 1.8 × 10(7) empty polyhedral. After a healing period of six months, whole mandibles were removed for micro-computed tomography (CT) and histological analyses. Micro-CT images showed that more bone had formed at all experimental sites than at control sites. However, the density of the new bone was not significantly higher at sites with an atelocollagen sponge containing BMP-2 polyhedra than at sites with an atelocollagen sponge containing rhBMP-2 or empty polyhedra. Histological examination confirmed that the BMP-2 polyhedra almost entirely replaced the atelocollagen sponges and connected the original bone with the regenerated bone. These results show that the BMP-2 delivery system facilitates the regeneration of new bone in the mandibular alveolar bone ridge and has an advance in the technology of bone regeneration for implant site development.


Asunto(s)
Proceso Alveolar/patología , Proteína Morfogenética Ósea 2/química , Cicatrización de Heridas , Animales , Cristalización , Perros , Femenino , Proteínas Recombinantes/química , Microtomografía por Rayos X
16.
Int J Oral Maxillofac Implants ; 29(6): 1293-300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25397793

RESUMEN

PURPOSE: Peri-implant osteogenesis is reported to be impaired in patients with diabetes. The current study tested the hypothesis that ultraviolet (UV) treatment of titanium, or photofunctionalization, is able to mitigate the impaired osseointegration associated with type 2 diabetes. MATERIALS AND METHODS: Untreated and photofunctionalized titanium implants were placed into the femurs of genetically modified rats with a close phenotypic resemblance to human type 2 diabetes, as characterized by late-onset hyperglycemia and obesity. Implants were photofunctionalized with UV light for 15 minutes immediately before placement. The strength of osseointegration was evaluated using a biomechanical push-in test, and the tissue-implant interface was examined using scanning electron microscopy and energy-dispersive spectroscopy. RESULTS: Photofunctionalization converted implants from hydrophobic to superhydrophilic. Photofunctionalization-induced hemophilicity was also confirmed during surgery. The strength of osseointegration of photofunctionalized implants was significantly greater than that of untreated implants, by 1.8 and 3 times, at weeks 2 and 4 of healing, respectively. Osseointegration of photofunctionalized implants in diabetic animals was even stronger than that of untreated implants placed in normal animals throughout the healing period. Photofunctionalized implants placed in diabetic rats were extensively covered with calcium- and phosphorus-rich tissue that masked the titanium signal. CONCLUSION: Photofunctionalization accelerated and enhanced levels of osseointegration and overcame impaired osseointegration in a rat model of type 2 diabetes. Further prospective studies are warranted to establish the clinical efficacy of photofunctionalization in patients with diabetes.


Asunto(s)
Grabado Dental/métodos , Implantes Dentales , Materiales Dentales/efectos de la radiación , Diabetes Mellitus Tipo 2/fisiopatología , Oseointegración/fisiología , Titanio/efectos de la radiación , Animales , Calcio/análisis , Materiales Dentales/química , Fémur/fisiopatología , Fémur/cirugía , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Microscopía Electrónica de Rastreo , Fósforo/análisis , Ratas , Ratas Endogámicas OLETF , Espectrometría por Rayos X , Estrés Mecánico , Propiedades de Superficie , Factores de Tiempo , Titanio/química , Rayos Ultravioleta
17.
J Biomater Appl ; 28(8): 1200-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23985537

RESUMEN

The objective of this study was to evaluate the effect of ultraviolet light treatment, known as photofunctionalization, on the biological and osseointegration capability of nanofeatured titanium created by a combination of sandblasting and hydrofluoric acid treatment. Titanium samples in disk and cylinder forms were photofunctionalized by treatment with ultraviolet light for 15 min. The nanofeatured surface was converted from hydrophobic to superhydrophilic after photofunctionalization. The strength of osseointegration measured by a biomechanical push-in test in a rat model was stronger for photofunctionalized implants than for untreated implants by 2.2 and 2.3 times, respectively, at the early (week 2) and late (week 4) stages of healing, implying that photofunctionalization did not only accelerate but also increased the degree of osseointegration. Culture studies using bone marrow-derived osteoblasts showed that the attachment, spread, and functional phenotypes of osteogenic cells, such as alkaline phosphatase activity and mineralization, were remarkably increased on photofunctionalized titanium. In conclusion, photofunctionalization substantially increased biological and osseointegration capability of a nanofeatured titanium surface. In light with proven effectiveness on microfeatured surfaces in the literature, photofunctionalization may provide a novel and practical avenue to further improve osseointegration capability of implants in a wide range of surface morphology with micro-to-nano features.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Oseointegración , Prótesis e Implantes , Titanio/química , Titanio/efectos de la radiación , Animales , Fenómenos Biomecánicos , Adhesión Celular , Células Cultivadas , Implantes Dentales , Fluoruros/química , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Oseointegración/fisiología , Osteoblastos/citología , Osteoblastos/fisiología , Procesos Fotoquímicos , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Rayos Ultravioleta
18.
J Biomater Appl ; 28(9): 1316-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24105428

RESUMEN

The aim of this study was to show the effectiveness of combining calcium phosphate cement and gelatin powders to promote bone regeneration in the canine mandible. We mixed gelatin powders with calcium phosphate cement to create a macroporous composite. In four beagle dogs, two saddle-type bone defects were created on each side of the mandible, and calcium phosphate cement alone or calcium phosphate cement containing composite gelatin powders was implanted in each of the defects. After a healing period of six months, mandibles were removed for µCT and histological analyses. The µCT and histological analyses showed that at experimental sites at which calcium phosphate cement alone had been placed new bone had formed only around the periphery of the residual calcium phosphate cement and that there had been little or no ingrowth into the calcium phosphate cement. On the other hand, at experimental sites at which calcium phosphate cement containing composite gelatin powders had been placed, we observed regenerated new bone in the interior of the residual calcium phosphate cement as well as around its periphery. The amount of resorption of calcium phosphate cement and bone regeneration depended on the mixing ratio of gelatin powders to calcium phosphate cement. New bone replacement was significantly better in the sites treated with calcium phosphate cement containing composite gelatin powders than in those treated with calcium phosphate cement alone.


Asunto(s)
Proceso Alveolar/fisiopatología , Cementos para Huesos , Fosfatos de Calcio/química , Gelatina/química , Polvos , Cicatrización de Heridas , Animales , Perros , Femenino , Microscopía Electrónica de Rastreo , Microtomografía por Rayos X
19.
J Biomater Appl ; 27(4): 485-93, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22071349

RESUMEN

The aim of this study was to evaluate the effects of combining porous poly-lactic acid-co-glycolic acid-co-ε-caprolactone (PLGC) as a barrier membrane and collagen sponge containing basic fibroblast growth factor (bFGF) to promote bone regeneration in the canine mandible. In six beagle dogs, two lateral bone defects per side were created in the mandible. The lateral bone defects on the left side were treated with a PLGC membrane plus a collagen sponge containing bFGF. In half of these, the collagen sponge contained 50 µg of bFGF. In the other half, it contained 250 µg of bFGF. As a control, we treated the right-side bone defects in each animal with the same PLGC membrane but with a collagen sponge containing phosphate buffered saline. Computed tomography (CT) images were recorded at 3 and 6 months post-op to evaluate regeneration of the bone defects. After a healing period of 6 months, whole mandibles were removed for micro-CT and histological analyses. The post-op CT images showed that more bone had formed at all experimental sites than at control sites. At 3 months post-op, the volume of bone at defect sites covered with PLGC membrane plus 250 µg of bFGF was significantly greater than it was at defect sites covered with PLGC membrane plus 50 µg of bFGF. At 6 months post-op, however, this difference was smaller and not statistically significant. Micro-CT measurement showed that the volume of new bone regenerated at bone-defect sites, covered with PLGC membrane plus bFGF, was significantly greater than that of control sites. However, the presence or absence of bFGF in the collagen sponge did not significantly affect the bone density of new bone. These results suggest that the macroporous bioresorbable PLGC membrane plus collagen sponge containing bFGF effectively facilitates healing in GBR procedures.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/química , Caproatos/química , Colágeno/química , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Ácido Láctico/química , Lactonas/química , Mandíbula/fisiología , Ácido Poliglicólico/química , Animales , Perros , Femenino , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Mandíbula/efectos de los fármacos , Traumatismos Mandibulares/terapia , Membranas Artificiales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porosidad
20.
Int J Oral Maxillofac Implants ; 27(3): 587-94, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22616052

RESUMEN

PURPOSE: The aim of this study was to qualitatively evaluate a poly(lactic acid-co-glycolic acid-co-ε-caprolactone) (PLGC) membrane as a barrier for guided bone regeneration in the canine mandible and to compare it to a nonresorbable polytetrafluoroethylene (PTFE) membrane. MATERIALS AND METHODS: Two wedge-shaped bone defects were created bilaterally in the mandibles of 12 beagle dogs. The bone defects in the left mandible were divided into three groups and treated as follows: PLGC membrane alone, PLGC membrane plus autogenous cortical bone chips, and titanium-reinforced expanded PTFE (TR-PTFE) membrane. The bone defects in the right mandible of each animal were left without membranes as a control. Computed tomography (CT) was performed at 3 and 6 months postoperative to evaluate bone regeneration. After a healing period of 6 months, the mandibles were removed en bloc for micro-CT and histologic analyses. RESULTS: CT analyses at 3 and 6 months showed that there was significantly more bone augmentation at all experimental sites than at the control sites. The volume of bone at defect sites covered with TR-PTFE was significantly greater than at defect sites covered with PLGC membrane with or without autogenous cortical bone. Micro-CT measurements showed that the volume of new bone formed at sites covered with TR-PTFE was significantly greater than at sites covered with PLGC membrane. However, the density of new bone was significantly higher at sites covered with PLGC membrane, with or without cortical bone, than at sites covered with TR-PTFE. Histologic analysis verified the presence of well-vascularized loose connective tissue in the pores of the PLGC membrane. CONCLUSIONS: Compared to TR-PTFE, the macroporous bioresorbable PLGC membrane did not significantly increase the amount of new bone in defect sites, but it facilitated the regeneration of mature bone.


Asunto(s)
Pérdida de Hueso Alveolar/cirugía , Regeneración Ósea , Regeneración Tisular Guiada Periodontal/métodos , Membranas Artificiales , Poliésteres , Implantes Absorbibles , Pérdida de Hueso Alveolar/diagnóstico por imagen , Aumento de la Cresta Alveolar/métodos , Animales , Perros , Femenino , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Osteotomía Mandibular , Politetrafluoroetileno , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA