Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 236(6): 2009-2013, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36098674
2.
Plant Cell ; 22(12): 4045-66, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21193570

RESUMEN

Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Polen , Sintasas Poliquetidas/genética , Alelos , Genes de Plantas , Hibridación in Situ , Cinética , Microscopía Electrónica de Transmisión , Mutación , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
New Phytol ; 192(4): 855-868, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21883237

RESUMEN

Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Biopolímeros/biosíntesis , Bryopsida/enzimología , Carotenoides/biosíntesis , Evolución Molecular , Flores/enzimología , Oxidorreductasas Intramoleculares/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Biocatálisis , Biopolímeros/química , Vías Biosintéticas , Bryopsida/genética , Carotenoides/química , Dominio Catalítico , Cromatografía en Capa Delgada , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Oxidorreductasas Intramoleculares/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Pironas/química , Pironas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Esporas/genética , Especificidad por Sustrato
4.
PLoS One ; 11(1): e0146817, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26752629

RESUMEN

Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores.


Asunto(s)
Aciltransferasas/metabolismo , Biopolímeros/biosíntesis , Bryopsida/enzimología , Carotenoides/biosíntesis , Pared Celular/enzimología , Proteínas de Plantas/metabolismo , Esporas/fisiología , Briófitas/enzimología , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
5.
FEBS J ; 281(17): 3855-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040801

RESUMEN

Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.


Asunto(s)
Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Dominio Catalítico/genética , Hypericum/enzimología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA