Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37370336

RESUMEN

Indole, a metabolite of the amino acid tryptophan, has been proven to act as a signal molecule in bacteria, acting in different aspects of biofilm formation. The oral biofilm is a type of biofilm that has consequences for human health. It is a complex, three-dimensional structure that develops on the surface of teeth via the attachment of primary microbial colonizers. Many oral infections are caused by an imbalance occurring in the microorganisms naturally found in oral biofilms and are considered major public health concerns. In this study, we test the effect of a natural bis-indole, 3,3'-Diindolylmethane (DIM), in mitigating the pathogenicity of the oral biofilm inhabiting bacterium Streptococcus mutans, a bacterium that is considered to be a principal etiological agent in dental caries. Our study found that DIM was able to attenuate S. mutans biofilm formation by 92%. Additionally, treatment with DIM lowered extracellular polymeric substance (EPS) production and decreased its durability significantly under acidic conditions. Therefore, the anti-biofilm and anti-virulence properties of DIM against S. mutans bacteria in an "oral setting" provides evidence for its usefulness in reducing biofilm formation and potentially for caries attenuation.

2.
Microbiol Spectr ; 10(4): e0119922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35880891

RESUMEN

Streptococcus mutans is known as an important oral pathogen causing dental caries, a widespread oral infectious disease. S. mutans synthesize exopolysaccharide (EPS) using glucosyltransferases (Gtfs), resulting in biofilm formation on the tooth surface. Bacterial cells in the biofilms become strongly resistant to a harsh environment, such as antibiotics and host defense mechanisms, making biofilm-based infections difficult to eliminate. Discovering novel antibiofilm agents, especially from natural products, helps to develop effective strategies against this kind of diseases. The present study investigated the inhibitory effect of shikimic acid (SA), one abundant compound derived from Illicium verum extract, on the biofilm formation of S. mutans. We found SA can reduce the EPS synthesized by this oral pathogen and modulate the transcription of biofilm formation related genes, leading to fewer bacterial cells in its biofilm. SA also interacted with cell membrane and membrane proteins, causing damage to bacterial cells. Ex vivo testing of biofilm formation on bovine teeth showed SA strongly decreased the number of S. mutans cells and the number of EPS accumulated on dental enamel surfaces. Moreover, SA exhibits almost no toxicity to human oral cells evaluated by in vitro biocompatibility assay. In conclusion, shikimic acid exhibits remarkable antibiofilm activity against S. mutans and has the potential to be further developed as a novel anticaries agent. IMPORTANCE Natural products are an important and cost-effective source for screening antimicrobial agents. Here, we identified one compound, shikimic acid, from Illicium verum extract, exhibiting antimicrobial activity against S. mutans proliferation. It also inhibits biofilm formation of this bacteria through decreasing Gtf expression and EPS synthesis. Furthermore, this compound exhibits no significant cytotoxicity at its MIC against S. mutans, providing evidence for its clinical application.


Asunto(s)
Productos Biológicos , Caries Dental , Animales , Biopelículas , Bovinos , Humanos , Extractos Vegetales/farmacología , Ácido Shikímico/farmacología , Streptococcus mutans/fisiología , Factores de Virulencia
3.
J Oral Microbiol ; 14(1): 2056291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341208

RESUMEN

Dental caries is among the most prevalent chronic oral infectious diseases. Streptococcus mutans, a major cariogenic bacterial species, possesses several cariogenicity-associated characteristics, including exopolysaccharides (EPS) synthesis, biofilm formation, acidogenicity, and aciduricity. Nicotinamide (NAM), a form of vitamin B3, is a non-toxic, orally available, and inexpensive compound. The present study investigated the inhibitory effects of NAM on the cariogenic virulence factors of S. mutans in vitro and in vivo. NAM inhibited the growth of S. mutans UA159 and the clinical isolates. In addition, there was a decrease in the acid production and acid tolerance ability, as well as biofilm formation and EPS production of S. mutans after NAM treatment. Global gene expression profiling showed that 128 and 58 genes were significantly downregulated and upregulated, respectively, in NAM-treated S. mutans strains. The differentially expressed genes were mainly associated with carbohydrate transport and metabolism, glycolysis, acid tolerance. Moreover, in a rat caries model, NAM significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo. NAM exhibited good antimicrobial properties against S. mutans, indicating its potential value for antibiofilm and anti-caries applications.

4.
mBio ; 13(5): e0201322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36043788

RESUMEN

Lysine acetylation, a ubiquitous and dynamic regulatory posttranslational modification (PTM), affects hundreds of proteins across all domains of life. In bacteria, lysine acetylation can be found in many essential pathways, and it is also crucial for bacterial virulence. However, the biological significance of lysine acetylation events to bacterial virulence factors remains poorly characterized. In Streptococcus mutans, the acetylome profiles help identify several lysine acetylation sites of lactate dehydrogenase (LDH), which catalyzes the conversion of pyruvate to lactic acid, causing the deterioration of teeth. We investigated the regulatory mechanism of LDH acetylation and characterized the effect of LDH acetylation on its function. We overexpressed the 15 Gcn5 N-acetyltransferases (GNAT) family members in S. mutans and showed that the acetyltransferase ActA impaired its acidogenicity by acetylating LDH. Additionally, enzymatic acetyltransferase reactions demonstrated that purified ActA could acetylate LDH in vitro, and 10 potential lysine acetylation sites of LDH were identified by mass spectrometry, 70% of which were also detected in vivo. We further demonstrated that the lysine acetylation of LDH inhibited its enzymatic activity, and a subsequent rat caries model showed that ActA impaired the cariogenicity of S. mutans. Collectively, we demonstrated that ActA, the first identified and characterized acetyltransferase in S. mutans, acetylated the LDH enzymatically and inhibited its enzymatic activity, thereby providing a starting point for the further analysis of the biological significance of lysine acetylation in the virulence of S. mutans. IMPORTANCE Lysine acetylation, a dynamic regulatory posttranslational modification, remains poorly characterized in bacteria. Hundreds of proteins have been identified to be acetylated in bacteria, with advances made in acetylome analyses. However, the regulatory mechanisms and functional significance of the majority of these acetylated proteins remain unclear. We analyzed the acetylome profiles of Streptococcus mutans and found that lactate dehydrogenase (LDH) contains several lysine acetylation sites. We also demonstrated that the acetyltransferase ActA, a member of the Gcn5 N-acetyltransferases (GNAT) family in S. mutans, acetylated LDH, inhibited its enzymatic ability to catalyze the conversion of pyruvate to lactic acid, and impaired its cariogenicity in a rat caries model. Therefore, LDH acetylation might be a potential target that can be exploited in the design of novel therapeutics to prevent dental caries.


Asunto(s)
Caries Dental , Streptococcus mutans , Ratas , Animales , Acetilación , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Lisina/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Ácido Láctico , Piruvatos
5.
Front Microbiol ; 11: 774, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425911

RESUMEN

Among cariogenic microbes, Streptococcus mutans is considered a major etiological pathogen of dental caries. Lactobacilli strains have been promoted as possible probiotic agents against S. mutans, although the inhibitory effect of Lactobacilli on caries has not yet been properly addressed. The objective of this study was to screen Lactobacillus strains found in traditional Sichuan pickles and to evaluate their antagonistic properties against S. mutans in vitro and in vivo. In the current study, we analyzed 54 Lactobacillus strains isolated from pickles and found that strain L. plantarum K41 showed the highest inhibitory effect on S. mutans growth as well as on the formation of exopolysaccharides (EPS) and biofilm in vitro. Scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) revealed the reduction of both EPS and of the network-like structure in S. mutans biofilm when these bacteria were co-cultured with strain L. plantarum K41. Furthermore, when rats were treated with strain L. plantarum K41, there was a significant reduction in the incidence and severity of dental caries. Due to K41's origin in a high salinity environment, it showed a high tolerance to acids and salts. This may give this strain an advantage in harsh oral conditions. Results showed that L. plantarum K41 isolated from traditional Sichuan pickles effectively inhibited S. mutans biofilm formation and thus possesses a potential inhibitory effect on dental caries in vivo.

6.
Diabetes ; 66(8): 2137-2143, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28446519

RESUMEN

A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis.


Asunto(s)
Resinas de Intercambio de Catión/administración & dosificación , Endotoxemia/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Metabólicas/terapia , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Poliestirenos/administración & dosificación , Administración Oral , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/tratamiento farmacológico , Disbiosis/microbiología , Endotoxemia/microbiología , Endotoxinas/sangre , Trasplante de Microbiota Fecal/métodos , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/microbiología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/microbiología , Simbiosis/efectos de los fármacos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA