Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 62(8): 2409-2434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38609577

RESUMEN

ASTRACT: One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Peróxido de Hidrógeno , Ácido Láctico , Lipopolisacáridos , Estrés Oxidativo , Periodontitis , Saliva , Humanos , Saliva/química , Saliva/metabolismo , Periodontitis/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Técnicas Biosensibles/métodos , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Espectroscopía Dieléctrica/métodos , Biomarcadores/análisis , Biomarcadores/metabolismo , Aprendizaje Automático
2.
Dent Mater ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39174418

RESUMEN

OBJECTIVE: Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components. Although several fretting-corrosion studies have been reported, until now, no study has simulated clinically relevant micromotion. Therefore, our aim is to investigate fretting-corrosion using our new micro-fretting corrosion system, simulating clinical conditions with 5 µm motion at the implant-abutment interface under various occlusal loads and acidic exposures. METHODS: We simulated four conditions in an oral environment by varying the contact load (83 N and 233 N) and pH levels (3 and 6.5). The commonly used dental implant material, Grade IV titanium, and abutment material Zirconia (ZrO2)/ Grade IV titanium were selected as testing couple materials. Artificial saliva was employed to represent an oral environment. In addition, a standard tribocorrosion protocol was followed, and the pin was controlled to oscillate on the disk with an amplitude of 5 µm during the mastication stage. After the testing, 3D profilometry and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were utilized to analyze the worn surfaces. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to measure the metal ion release. RESULTS: Energy ratios were below 0.2, indicating a fretting regime of partial slip for all groups. Open-circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were analyzed to compare the electrochemical behavior among groups. As a result, corrosive damage was observed to be more in the Ti4- Ti4 groups than in Zr-Ti4 ones, whereas more mechanical damage was found in the Zr-Ti4 groups than in the Ti4-Ti4 groups. Possible mechanisms were proposed in the discussion to explain these findings. SIGNIFICANCE: The results observed from this study might be helpful to clinicians with implant selection. For example, for patients with bruxism, a titanium implant paired with a titanium abutment may be preferable, while patients with GERD may benefit more from a titanium implant paired with a zirconia abutment.

3.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917828

RESUMEN

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Animales , Línea Celular Tumoral , Transducción de Señal , Supervivencia Celular , Ingeniería de Tejidos/métodos , Quitosano/química , Fosfatasa Alcalina/metabolismo , Oseointegración , Polímeros/química , Porosidad
4.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657556

RESUMEN

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Asunto(s)
Antibacterianos , Bentonita , Cementos para Huesos , Fosfatos de Calcio , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Escherichia coli , Gentamicinas , Staphylococcus aureus , Bentonita/química , Antibacterianos/farmacología , Antibacterianos/química , Gentamicinas/farmacología , Gentamicinas/química , Gentamicinas/administración & dosificación , Gentamicinas/farmacocinética , Fosfatos de Calcio/química , Cementos para Huesos/química , Cementos para Huesos/farmacología , Animales , Escherichia coli/efectos de los fármacos , Ratones , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula
5.
Artículo en Inglés | MEDLINE | ID: mdl-38525435

RESUMEN

Tribocorrosion is an integration of two areas-tribology and corrosion. It can be defined as the material degradation caused by the combined effect of corrosion and tribological process at the material interfaces. Significant development has occurred in the field of tribocorrosion over the past years. This development is due to its applications in various fields, such as aerospace, marine, biomedical, and space. Focusing on biomedical applications, tribocorrosion finds its applications in the implants used in cardiovascular, spine, orthopedics, trauma, and dental areas. It was reported that around 7.2 million Americans are living with joint implants. Implant surgery is a traumatic and expensive procedure. Tribocorrosion can affect the lifespan of the implants, thus leading to implant failure and a potential cause of revision surgery. Hence, it is essential to understand how tribocorrosion works, its interaction with the implants, and what procedures can be implemented to protect materials from tribocorrosion. This paper discusses how tribocorrosion research has evolved over the past 11 years (2010-2021). This is a comprehensive overview of tribocorrosion research in biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA