Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473994

RESUMEN

Major latex proteins, or MLPs, are crucial to plants' capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. This study discovered and assessed 43 PtMLP genes that were unevenly dispersed throughout 12 chromosomes in terms of their physicochemical characteristics, gene structure, conserved motifs, and protein localization. Based on their phylogeny and protein structural characteristics, three separate subclasses of PtMLP family were identified. Segmental and tandem duplication were found to be essential variables in the expansion of the PtMLP genes. The involvement of the PtMLP genes in growth and development, as well as in the responses to different hormones and stresses, was demonstrated by cis-regulatory element prediction. The PtMLP genes showed varying expression patterns in various tissues and under different conditions (cold, salt, and drought stress), as demonstrated in RNA-Seq databases, suggesting that PsnMLP may have different functions. Following the further investigation of the genes demonstrating notable variations in expression before and after the application of three stresses, PsnMLP5 was identified as a candidate gene. Subsequent studies revealed that PsnMLP5 could be induced by ABA treatment. This study paves the way for further investigations into the MLP genes' functional mechanisms in response to abiotic stressors, as well as the ways in which they can be utilized in poplar breeding for improved stress tolerance.


Asunto(s)
Proteínas de Plantas , Populus , Proteínas de Plantas/genética , Populus/genética , Látex/metabolismo , Fitomejoramiento , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Familia de Multigenes
2.
Water Sci Technol ; 89(6): 1570-1582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557719

RESUMEN

Despite the high adsorption capacity of polyaluminum chloride and anionic polyacrylamide water treatment residuals (PAC-APAM WTRs) for Pb2+, Cd2+, Cu2+, and Zn2+, their influence on the adsorption behavior of heavy metals in traditional bioretention soil media remains unclear. This study investigated the impact of PAC-APAM WTRs at a 20% weight ratio on the adsorption removal of Pb2+, Cd2+, Cu2+, and Zn2+ in three types of soils. The results demonstrated improved heavy metal adsorption in the presence of PAC-APAM WTRs, with enhanced removal observed at higher pH levels and temperatures. The addition of PAC-APAM WTRs augmented the maximum adsorption capacity for Pb2+ (from 0.98 to 3.98%), Cd2+ (from 0.52 to 10.99%), Cu2+ (from 3.69 to 36.79%), and Zn2+ (from 2.63 to 13.46%). The Langmuir model better described the data in soils with and without PAC-APAM WTRs. The pseudo-second-order model more accurately described the adsorption process, revealing an irreversible chemical process, although qe demonstrated improvement with the addition of PAC-APAM WTRs. This study affirms the potential of PAC-APAM WTRs as an amendment for mitigating heavy metal pollution in stormwater bioretention systems. Further exploration of the engineering application of PAC-APAM WTRs, particularly in field conditions for the removal of dissolved heavy metals, is recommended.


Asunto(s)
Resinas Acrílicas , Hidróxido de Aluminio , Metales Pesados , Purificación del Agua , Cadmio , Suelo , Adsorción , Plomo , Metales Pesados/análisis , Purificación del Agua/métodos
3.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 81-87, 2024 Feb 18.
Artículo en Zh | MEDLINE | ID: mdl-38318900

RESUMEN

OBJECTIVE: To compare the trueness of incisal guidance of implant-supported single crowns designed by patient-specific motion (PSM) with that designed by average-value virtual articulator (AVA). METHODS: The study had recruited 12 participants with complete dentition and stable incisal guidance. An intraoral scanner was used to scan digital casts and record two types of patient-specific motion (data only including protrusive movement, and data including protrusive movement and lateral protrusive movement). The lingual surfaces of the maxillary incisors which guided the protrusive movement was selected and elevated to create a reference cast. A maxillary central incisor of original casts was vir-tually extracted and implanted to generate a working cast. The Dental system software program was used to design implant-supported single crowns with the anatomical coping design method. The incisal guidance was designed by different methods. The incisal guidance in control group was designed by the average-value virtual articulator. The incisal guidance in experiment groups was designed by the patient-specific motion only including protrusive movement (PSM1) and with the patient-specific motion including protrusive movement and lateral protrusive movement (PSM2). The incisal guidance of prosthesis designed by these 3 methods were compared with the original incisal guidance in Geomagic Control 2015 (3DSystem, America). The measurements included: Average of positive values, ratio of positive area and maximum value reflecting supra-occlusion; average of negative values, ratio of negative area and minimum value reflecting over-correction; and root mean square reflecting overall deviation. RESULTS: Statistical data were collected using the median (interquartile range) method. The average of positive values, ratio of positive area and average of negative values of the PSM2 group were smaller than those of the control group [8.0 (18.8) µm vs. 37.5 (47.5) µm; 0 vs. 7.2% (38.1%); -109.0 (63.8) µm vs.-66.5 (64.5) µm], and the ratio of negative area of PSM2 group was larger than those of the control group [52.9% (47.8%) vs. 17.3% (45.3%)], with significant differences (P all < 0.05). The ratio of positive area [0.1% (7.0%)] and average of negative values [-97.0 (61.5) µm] of PSM1 group, were smaller than those of the control group, and the ratio of negative area [40.7% (39.2%)] of the PSM1 group was larger than that of the control group, with significant differences (P < 0.05). The average of positive values [20.0 (42.0) µm] and ratio of positive area of PSM1 group was larger than that of the PSM2 group with significant differences (P < 0.05). CONCLUSION: To establish the incisor guidance of implant-supported single crowns, compared with the average-value virtual articulator and the patient-specific motion only including protrusive movement, the patient-specific motion including protrusive movement and lateral protrusive movement is more conducive to reducing the protrusive interference of prosthesis and improving the occlusal fit.


Asunto(s)
Incisivo , Programas Informáticos , Humanos , Maxilar , Coronas , Movimiento , Diseño Asistido por Computadora
4.
AAPS PharmSciTech ; 24(8): 235, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973629

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Liposomas , Ratones , Animales , Liposomas/farmacología , Bleomicina/efectos adversos , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Pulmón , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología
5.
BMC Oral Health ; 23(1): 151, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918877

RESUMEN

BACKGROUND: Precise occlusal design of implant-supported fixed prostheses is difficult to achieve by the conventional wax-up method, often requiring chairside adjustments. The computer-aided design (CAD) method is promising. This study aims to compare the occlusal contacts and clearance of posterior implant-supported single crowns designed by the CAD and conventional methods. METHODS: Sample size calculation indicated fourteen samples per group. Two sets of type-IV plaster casts with a single implant analog inserted in the posterior teeth region were mounted as master casts in a mechanical articulator in maximal intercuspal position (MIP). Seven working cast sets were obtained from each master cast by a closed tray technique, and mounted in MIP. Two implant-supported single crowns were designed with an occlusal clearance to achieve light occlusal contact in each working cast set by CAD and conventional method, separately. For the CAD group, the crown was designed in digital models obtained by scanning the working casts. For the conventional group, wax-up of the crown was prepared on the working casts and scanned to generate a STL file. In the working and master casts, mean and minimum occlusal clearances in the designed occlusal contact area of the both finished prostheses were calculated using the occlusal clearance (OC) and occlusal record (OR) method. The prostheses' occlusion was evaluated in master casts. RESULTS: For the evaluation in the working casts, both design methods had similar mean occlusal clearances by the OC method (195.4 ± 43.8 vs. 179.8 ± 41.8 µm; P = 0.300), while CAD group resulted in a significantly larger minimum occlusal clearance in the designed occlusal contact area (139.5 ± 52.3 vs. 99.8 ± 43.8 µm; P = 0.043). Both design methods had similar mean and minimum occlusal clearances by the OR method (P > 0.05). For the evaluation in the master casts, both design techniques had similar mean and minimum occlusal clearances, number and distribution of occlusal contacts, and lateral interference ratios (P > 0.05). CONCLUSION: Occlusal contact and clearance of posterior implant-supported single crowns designed by the CAD method can be at least as good as those designed by the conventional wax-up method.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Humanos , Oclusión Dental , Proyectos de Investigación , Técnica de Impresión Dental , Diseño de Prótesis Dental/métodos
6.
Clin Oral Implants Res ; 33(10): 1000-1009, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35852859

RESUMEN

PURPOSE: To compare the accuracy of chairside, fused deposition modeling (FDM) three-dimensional (3D)-printed surgical guides with that of stereolithographic guides for implant placement in single edentulous sites within a clinical setting. MATERIALS AND METHODS: A total of 28 participants with 30 single posterior edentulous sites were included. The sites were randomized into a FDM 3D-printed surgical guide group (test) or stereolithographic guide group (control) of equal size (n = 15). In both groups, digital implant planning was performed using data from cone beam-computed tomography and intraoral scans. The test group's surgical guides were fabricated using a chairside, FDM 3D-printer; those in the control group were fabricated using a light-curing 3D-printer. Postoperative intraoral scans were used to obtain the 3D position of the implants. Compared to preoperative design, the angular, 3D, mesiodistal, buccolingual and apicocoronal deviations at the implant shoulder and apex were recorded. RESULTS: The workflow for the design and chairside fabrication of implant guides was established. The mean angular deviations of the test and control group were (4.23 ± 2.38) ° and (4.13 ± 2.42) ° (p > .05), respectively. The respective 3D deviations at the implant shoulder were (0.70 ± 0.44) mm and (0.55 ± 0.27) mm (p > .05); those at the implant apex were (1.25 ± 0.61) mm and (1.11 ± 0.54) mm (p > .05). The mesiodistal, buccolingual, and apicocoronal deviations at the implant shoulder and apex did not significantly differ between the groups (p > .05). CONCLUSIONS: Implants for single posterior edentulous spaces were placed as accurately with the test guide as with the control. Further research under more complex situations involving multiple missing teeth is needed.


Asunto(s)
Implantes Dentales , Boca Edéntula , Cirugía Asistida por Computador , Diseño Asistido por Computadora , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea/métodos , Humanos , Imagenología Tridimensional , Cirugía Asistida por Computador/métodos
7.
Oral Dis ; 28(4): 1188-1197, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33682229

RESUMEN

OBJECTIVES: Primary cilium is a key organelle of regulating bone development and maintenance. The aim of this study is to investigate whether ciliary intraflagellar transporter protein 140 (IFT140) plays a positive role in extraction socket healing by promoting bone formation. MATERIALS AND METHODS: A left maxillary first molar extraction model was established using 6-week-old Ift140flox/flox (Ctrl group) and Ift140flox/flox , Osx-cre (cKO group) mice. The maxillary bone samples from 1, 2, and 3 weeks were postoperatively evaluated by micro-CT, molecular biology, and histomorphometry analysis. Alveolar bone marrow stromal cells (aBMSCs) from 4-week-old mice were cultured in vitro and tested for proliferation and osteogenic ability. RESULTS: Ciliated cells were predominantly observed in the early socket healing stage with highly expressed ciliary protein IFT140. Compared with the Ctrl group, the healing of extraction sockets in the cKO group was significantly delayed. The proliferation and osteogenic differentiation ability of aBMSCs were reduced in the cKO group. CONCLUSION: IFT140 has a facilitating role in the early osteogenesis of extraction socket healing and is involved in regulating the proliferation and osteogenic differentiation of aBMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Proteínas Portadoras , Ratones , Ligamento Periodontal , Extracción Dental , Alveolo Dental/cirugía
8.
Biochem Biophys Res Commun ; 526(4): 1125-1130, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32331833

RESUMEN

The regeneration of bone defects is necessary for the successful healing. During the process of healing, callus plays crucial roles in providing the stable bone-reconstruction environment. The callus is consisted of various large molecules including collagen proteins, non-collagen proteins and proteoglycans (PGs), which are involved in maintaining mechanical strength and interacting with cytokines and grow factors in the injury sites. Recently, our data have found that the PG form of Dentin Matrix Protein 1 (DMP1-PG), which is a newly identified PG, was richly expressed in the bone defect sites. Previous researches have demonstrated the special role of DMP1-PG in chondrogenesis and endochondral ossification, however, the knowledge about the role of DMP1-PG in bone defect repair is still limited. To further detect the potential function of DMP1-PG in the defect healing, we employed a bone defect intramembranous ossification model using the glycosylation site mutant DMP1-PG (S89-G89, S89G-DMP1) mouse. The morphologic changes of calluses and abnormal expression levels of osteogenesis genes were displayed in the injury sites in S89G-DMP1 mice. In addition, impaired BMP-Smad signaling pathway was observed due to the deficiency of DMP1-PG. Collectively, our findings indicated that the DMP1-PG is one of key proteoglycans in the process of defect healing via regulating the osteogenesis.


Asunto(s)
Huesos/metabolismo , Huesos/patología , Proteínas de la Matriz Extracelular/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Callo Óseo/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glicosilación , Masculino , Ratones Transgénicos , Osteogénesis , Proteoglicanos/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo
9.
J Oral Rehabil ; 47 Suppl 1: 19-28, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31461788

RESUMEN

Craniosynostosis, a severe craniofacial developmental disease, can only be treated with surgery currently. Recent studies have shown that proteoglycans are involved in the suture development. For the bone matrix protein, dentin matrix protein 1 (DMP1), glycosylation on the N-terminal of it could generate a functional proteoglycan form of DMP1 during osteogenesis. We identified that the proteoglycan form of DMP1 (DMP1-PG) is highly expressed in mineralisation front of suture. But, the potential role of DMP1-PG in suture fusion remain unclear. To investigate the role of DMP1-PG in cranial suture fusion and craniofacial bone development. By using a DMP1 glycosylation site mutation mouse model, DMP1-S89G mice, we compared the suture development in it with control mice. We compared the suture phenotypes, bone formation rate, expression levels of bone formation markers in vivo between DMP1-S89G mice and wild-type mice. Meanwhile, cell culture and organ culture were performed to detect the differences in cell differentiation and suture fusion in vitro. Finally, chondroitin sulphate (CHS), as functional component of DMP1-PG, was employed to test whether it could delay the premature suture fusion and the abnormal differentiation of bone mesenchymal stem cells (BMSCs) of DMP1-PG mice. DMP1-S89G mice had premature closure of suture and shorter skull size. Lack of DMP1-PG accelerated bone formation in cranial suture. DMP1-PG maintained the essential stemness of BMSCs in suture through blocking the premature differentiation of BMSCs to osteoblasts. Finally, chondroitin sulphate, a major component of DMP1-PG, successfully delayed the premature suture fusion by organ culture of skull in vitro. DMP1-PG could inhibit premature fusion of cranial suture and maintain the suture through regulating the osteogenic differentiation of BMSCs.


Asunto(s)
Suturas Craneales , Osteogénesis , Animales , Suturas Craneales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicosilación , Humanos , Ratones , Osteoblastos/metabolismo , Cráneo
10.
J Sep Sci ; 42(24): 3646-3652, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31613051

RESUMEN

Alkaloids are important natural products that exhibit a wide spectrum of pharmacological activities. To efficiently separate and purify them, a rosin-based polymer-bonded silica stationary phase in high-performance liquid chromatography was synthesized via the surface radical polymerization of ethylene glycol maleic rosinate acrylate and methacrylic acid onto functionalized silica. The stationary phases, columns, optimization of chromatographic conditions for alkaloids, and thermodynamic behavior of the analytes on the column were fully studied. Under the optimized conditions, the prepared column efficiently purified natural camptothecine, caffeine, and evodiamine with the corresponding purities of 92, 96, and 97%. With this work, we have developed an efficient approach to isolate alkaloids and promoted the research on rosin-based materials in biomedicine and analytical chemistry.


Asunto(s)
Alcaloides/aislamiento & purificación , Polímeros/química , Resinas de Plantas/química , Dióxido de Silicio/química , Alcaloides/química , Cromatografía Líquida de Alta Presión , Polimerizacion , Polímeros/síntesis química , Propiedades de Superficie , Termodinámica
11.
Biochem Biophys Res Commun ; 501(4): 968-973, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29775615

RESUMEN

Mesenchymal Stem Cells (MSCs) are self-renewing and multipotent stem cells which was investigated for diverse clinical applications. However, complex mechanism of MSCs fate determination is still not fully disclosed. Extracellular matrix (ECM) proteins contribute to maintain MSCs stemness by providing extracellular microenvironment. Increasing evidences show that ECM proteins could also regulate the fate of MSCs directly. Dentin matrix protein 1 (DMP1) is an ECM protein enrich in bone tissue and terminal cells, which well-known in promoting osteoblasts and osteocytes maturation, and facilitate mineralization. Recently, our experiment indicated that DMP1 was also expressed in MSCs of long bone. In present study, it is found that DMP1 expressed in Prx1 positive MSCs. And, DMP1 is down-regulated in early osteoblasts and up-regulated again in mature osteoblasts. DMP1 conditional knockout mice model under Prx1cre was generated to explore whether DMP1 regulates MSCs osteogenic differentiation. Specific ablation of DMP1 in Prx1 positive MSCs increased bone mass in vivo and promoted osteoblasts activity in vitro. This study provides a new understanding of DMP1's function in regulation of osteogenesis: not only an enhancer of bone formation, but also a negative regulator of MSCs differentiation in bone.


Asunto(s)
Diferenciación Celular , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Animales , Eliminación de Gen , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo
12.
J Pharmacol Exp Ther ; 364(3): 399-408, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29263242

RESUMEN

Intra-abdominal adhesion is a common complication after laparotomy. Conventional therapeutic strategies still cannot safely and effectively prevent this disorder. In this study, a combination of chitosan, cellulose, and seaweed polysaccharide (thereafter referred as CCS) was developed to significantly alleviate the formation of postoperative adhesion in rats with abdominal trauma. Transforming growth factor ß1 (TGF-ß1, an important promoter of fibrosis) and its downstream factors-namely, alpha-smooth muscle actin and plasminogen activator inhibitor-1 (PAI-1)-were effectively suppressed by CCS in vivo, and as a result, the activation of tissue plasminogen activator (tPA, may generate plasmin that is a fibrinolytic factor capable of breaking down fibrin) was significantly promoted, presenting antifibrosis effects of CCS. In addition, the activity of kinases [e.g., transforming growth factor-activated kinase 1 (TAK1), c-Jun N-terminal kinase (JNK)/Stress-activated Protein Kinase (SAPK), and p38] in the mitogen-activated protein kinase (MAPK) inflammation signaling pathway was also significantly suppressed by CCS in vivo, demonstrating anti-inflammatory functions of CCS. The histologic studies further confirmed the role of CCS in the inhibition of fibrosis, collagen deposition, inflammation, and vascular proliferation. These results indicate the clinical potential of CCS in the treatment of postoperative intra-abdominal adhesion. CCS may induce both antifibrosis and anti-inflammatory effects, potentially inhibiting the postoperative intra-abdominal adhesion. For antifibrosis effects, the expression of PAI-1 (a key factor for the adhesion formation) can be regulated by different TGF-ß1-associated signaling pathways, such as the Smads/p53 pathway, metalloproteinase/tissue inhibitor of matrix metalloproteinases pathway, Mitogen-activated Extracellular signal-regulated Kinase (MEK)/extracellular regulated protein kinase (ERK) pathway, and Yes-associated protein/transcriptional coactivator with PDZ-binding motif pathway. Following the downregulation of PAI-1 achieved by CCS, the activation of tPA (which may generate plasmin that is a fibrinolytic factor capable of breaking down fibrin) is significantly promoted. For anti-inflammation effects, CCS may suppress the phosphorylation of classic kinases (e.g., TAK1, JNK, and p38) in the MAPK signaling pathway. In addition to the MAPK pathway, inflammatory pathways, such as Nuclear Factor-κ-gene Binding(NF-κB), MEK/ERK, and Ras homologue protein/Rho associated coiled coil forming protein, are associated with the formation of intra-abdominal adhesion. Therefore, the prevention mechanisms of CCS will be further investigated in the future, with a hope of fully understanding of antiadhesion effects.


Asunto(s)
Abdomen/patología , Celulosa/farmacología , Quitosano/farmacología , Polisacáridos/farmacología , Complicaciones Posoperatorias/tratamiento farmacológico , Algas Marinas/química , Actinas/biosíntesis , Animales , Celulosa/uso terapéutico , Quitosano/uso terapéutico , Colágeno/metabolismo , Interacciones Farmacológicas , Masculino , Neovascularización Patológica/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Polisacáridos/uso terapéutico , Complicaciones Posoperatorias/metabolismo , Ratas , Ratas Wistar , Adherencias Tisulares/tratamiento farmacológico , Adherencias Tisulares/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis
13.
Biochem Biophys Res Commun ; 490(2): 356-363, 2017 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-28647374

RESUMEN

The well-known matrix protein Dentin matrix protein 1 (DMP1) is expressed by osteoblasts and osteocytes in bone, and it controls bone mineralization. Recently, it has been found that DMP1 is also expressed in other cell types, such as chondrocytes. Nestin+ cells are one important type of progenitor cell in bone marrow and are associated with bone remodeling. In our preliminary experiment, DMP1 could also be detected in Nestin+ cells in bone marrow. This study was designed to explore the effect on bone of DMP1 in Nestin+ cells. A transgenic mouse model with DMP1 expression driven by the Nestin promoter was generated. In vivo and in vitro experiments revealed that overexpression of DMP1 in Nestin+ cells could limit the proliferation and osteogenic differentiation of BMMSCs, subsequently leading to decreased bone mass. Lower expression of bone matrix protein and a lower bone deposition rate were also observed. Meanwhile, overexpression of DMP1 in Nestin+ cells had no influence on osteoclast activity. These data indicate that DMP1 plays negative roles in differentiation of Nestin+ cells and bone formation.


Asunto(s)
Huesos/fisiopatología , Proteínas de la Matriz Extracelular/genética , Nestina/genética , Osteogénesis , Animales , Densidad Ósea , Remodelación Ósea , Huesos/metabolismo , Huesos/patología , Proliferación Celular , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Nestina/metabolismo , Regiones Promotoras Genéticas , Regulación hacia Arriba
14.
Bioconjug Chem ; 28(7): 1925-1930, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28595014

RESUMEN

Development of a chelator-free and biocompatible platform for the facile construction of gadolinium3+ (Gd3+)-loaded nanoparticle based probes for in vivo magentic resonance imaging (MRI) is still challenging. Herein, biocompatible Gd3+-loading melanin dots (Gd-M-dots) have been easily prepared and have exhibited good loading efficiency for Gd3+, high stability, and higher T1 relaxivity compared to the commercial Gd-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) agent. Furthermore, Gd-M-dots showed unique photoacoustic (PA) properties, and a high PA imaging signal could be observed in vivo 1 h after injection. Compared to the traditional Gd3+-loaded nanoparticles for single-modal MRI, Gd-M-dots can also be radiolabeled with 64Cu2+ for positron emission tomography. Overall, these attractive properties of Gd-M-dots render them a promising imaging agent for various biomedical applications.


Asunto(s)
Radioisótopos de Cobre/análisis , Diagnóstico por Imagen/métodos , Melaninas/química , Sondas Moleculares/química , Nanopartículas/química , Materiales Biocompatibles/química , Quelantes , Gadolinio/análisis , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
15.
Stem Cells ; 33(3): 627-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25447379

RESUMEN

Recently, numerous types of human dental tissue-derived mesenchymal stem cells (MSCs) have been isolated and characterized, including dental pulp stem cells, stem cells from exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor cells, alveolar bone-derived MSCs, stem cells from apical papilla, tooth germ progenitor cells, and gingival MSCs. All these MSC-like cells exhibit self-renewal, multilineage differentiation potential, and immunomodulatory properties. Several studies have demonstrated the potential advantages of dental stem cell-based approaches for regenerative treatments and immunotherapies. This review outlines the properties of various dental MSC-like populations and the progress toward their use in regenerative therapy. Several dental stem cell banks worldwide are also introduced, with a view toward future clinical application.


Asunto(s)
Pulpa Dental/citología , Saco Dental/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular/fisiología , Humanos , Ingeniería de Tejidos
16.
PLoS Genet ; 8(5): e1002708, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615579

RESUMEN

Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA-mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation "promoter" but not an "inhibitor" in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos , Osteogénesis , Animales , Calcificación Fisiológica/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Línea Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/anomalías , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Odontoblastos/citología , Odontoblastos/metabolismo , Osteogénesis/genética
17.
Int J Mol Sci ; 16(10): 25121-40, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26506344

RESUMEN

Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification) was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Verticillium/patogenicidad , Pared Celular/metabolismo , Flavonoides/biosíntesis , Perfilación de la Expresión Génica , Gossypium/metabolismo , Lignina/biosíntesis , Necrosis/microbiología , Peroxidasa/metabolismo , Fenilalanina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Proteómica , Ácido Salicílico/metabolismo , Microbiología del Suelo , Xilema/microbiología
18.
J Histochem Cytochem ; : 221554241259059, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836522

RESUMEN

Jawbones and long bones, despite their shared skeletal lineage, frequently exhibit distinct origins and developmental pathways. Identifying specific progenitor subsets for mandibular osteogenesis remains challenging. Type II collagen is conventionally associated with cartilaginous structures, yet our investigation has identified the presence of type II collagen positive (Col2+) cells within the jawbone development and regeneration. The role of Col2+ cells in jawbone morphogenesis and repair has remained enigmatic. In this study, we analyze single-cell RNA sequencing data from mice jawbone at embryonic day 10.5. Through fate-mapping experiments, we have elucidated that Col2+ cells and their progeny are instrumental in mandibular osteogenesis across both fetal and postnatal stages. Furthermore, lineage tracing with a tamoxifen-inducible CreER system has established the pivotal role of Col2+ cells, marked by Col2-CreER and originating from the primordial Meckel's cartilage, in jawbone formation. Moreover, our research explored models simulating jawbone defects and tooth extraction, which underscored the osteogenic differentiation capabilities of postnatal Col2+ cells during repair. This finding not only highlights the regenerative potential of Col2+ cells but also suggests their versatility in contributing to skeletal healing and regeneration. In conclusion, our findings position Col2+ cells as essential in orchestrating osteogenesis throughout the continuum of mandibular development and repair.

19.
Int J Oral Sci ; 16(1): 15, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369512

RESUMEN

Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.


Asunto(s)
Células Madre Mesenquimatosas , Diente Molar , Animales , Ratones , Diente Molar/crecimiento & desarrollo , Morfogénesis , Germen Dentario/crecimiento & desarrollo
20.
Int J Cardiovasc Imaging ; 40(3): 601-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183509

RESUMEN

BACKGROUND: Early identification of abnormal left ventricular function in children with obstructive sleep apnea (OSA) is difficult using conventional echocardiographic indices and commonly used clinical markers of myocardial damage. We sought to investigate the value of automatic function imaging and myocardial work parameters in predicting early cardiac impairment in children having OSA with preserved left heart function and thereby identifying an optimal index for assessment. PATIENTS AND METHODS: Fifty-two children who presented with symptoms of nocturnal sleep snoring and open-mouth breathing and 34 healthy controls were enrolled in this study. Clinical characteristics and conventional echocardiographic data were collected, and image analysis was performed using two-dimensional speckle-tracking echocardiography to obtain left ventricular global longitudinal strain (GLS), post-systolic index, peak strain dispersion, global work index (GWI), global constructive work (GCW), global wasted work, and global work efficiency. RESULTS: Children with OSA had significantly lower GLS, GWI, and GCW than those without (P < 0.05). Additionally, GWI (ß = -32.87, 95% CI: -53.47 to -12.27), and GCW (ß = -35.09, 95% CI: -55.35 to -14.84) were found to correlate with the disease severity in the multiple linear regression mode, with worsening values observed as the severity of the disease increased. ROC curve analysis revealed that GCW was the best predictor of myocardial dysfunction, with an AUC of 0.809 (P < 0.001), and the best cutoff point for diagnosing myocardial damage in children with OSA was 1965.5 mmHg%, with a sensitivity of 92.5% and a specificity of 58.7%. CONCLUSIONS: GLS, GWI, and GCW were identified as predictors of myocardial dysfunction in children with OSA, with GCW being the best predictor.


Asunto(s)
Apnea Obstructiva del Sueño , Disfunción Ventricular Izquierda , Niño , Humanos , Valor Predictivo de las Pruebas , Ecocardiografía/métodos , Sístole , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/diagnóstico por imagen , Función Ventricular Izquierda , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA