Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 23(1): 10, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279147

RESUMEN

BACKGROUND: Functional electrical stimulation (FES) can be used in rehabilitation to aid or improve function in people with paralysis. In clinical settings, it is common practice to use transcutaneous electrodes to apply the electrical stimulation, since they are non-invasive, and can be easily applied and repositioned as necessary. However, the current electrode options available for transcutaneous FES are limited and can have practical disadvantages, such as the need for a wet interface with the skin for better comfort and performance. Hence, we were motivated to develop a dry stimulation electrode which could perform equivalently or better than existing commercially available options. METHODS: We manufactured a thin-film dry polymer nanocomposite electrode, characterized it, and tested its performance for stimulation purposes with thirteen healthy individuals. We compared its functionality in terms of stimulation-induced muscle torque and comfort level against two other types of transcutaneous electrodes: self-adhesive hydrogel and carbon rubber. Each electrode type was also tested using three different stimulators and different intensity levels of stimulation. RESULTS: We found the proposed dry polymer nanocomposite electrode to be functional for stimulation, as there was no statistically significant difference between its performance to the other standard electrodes. Namely, the proposed dry electrode had comparable muscle torque generated and comfort level as the self-adhesive hydrogel and carbon rubber electrodes. From all combinations of electrode type and stimulators tested, the dry polymer nanocomposite electrode with the MyndSearch stimulator had the most comfortable average rating. CONCLUSIONS: The dry polymer nanocomposite electrode is a durable and flexible alternative to existing self-adhesive hydrogel and carbon rubber electrodes, which can be used without the addition of a wet interfacing agent (i.e., water or gel) to perform as well as the current electrodes used for stimulation purposes.


Asunto(s)
Cementos de Resina , Goma , Humanos , Estimulación Eléctrica , Hidrogeles , Electrodos , Carbono
2.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36617030

RESUMEN

When we think of "soft" in terms of socially assistive robots (SARs), it is mainly in reference to the soft outer shells of these robots, ranging from robotic teddy bears to furry robot pets. However, soft robotics is a promising field that has not yet been leveraged by SAR design. Soft robotics is the incorporation of smart materials to achieve biomimetic motions, active deformations, and responsive sensing. By utilizing these distinctive characteristics, a new type of SAR can be developed that has the potential to be safer to interact with, more flexible, and uniquely uses novel interaction modes (colors/shapes) to engage in a heighted human-robot interaction. In this perspective article, we coin this new collaborative research area as SoftSAR. We provide extensive discussions on just how soft robotics can be utilized to positively impact SARs, from their actuation mechanisms to the sensory designs, and how valuable they will be in informing future SAR design and applications. With extensive discussions on the fundamental mechanisms of soft robotic technologies, we outline a number of key SAR research areas that can benefit from using unique soft robotic mechanisms, which will result in the creation of the new field of SoftSAR.


Asunto(s)
Robótica , Materiales Inteligentes , Humanos , Biomimética
3.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659192

RESUMEN

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Asunto(s)
Microcystis , Nitrógeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Nitrógeno/química , Nitrógeno/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamaño de la Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Urea/metabolismo , Urea/química , Urea/farmacología
4.
Water Res ; 223: 118993, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007401

RESUMEN

A better understanding of the interaction between nanoplastics and archaea is crucial to fill the knowledge gaps regarding the ecological safety of nanoplastics. As a vital source for global methane emissions, methanogenic archaea have unique cell membranes that are distinctly different from those in all other forms of life, little is known about their interaction with nanoplastics. Here, we show that polystyrene nanoparticles functionalized with sulfonic acid (PS-SO3H) and amino (PS-NH2) interact with this methanogenic archaeon in distinct ways. Although both of them have no significant phenotype effects on Methanosarcina acetivorans C2A, these nanoparticles could affect DNA-mediated transposition of this methanogenic archaeon, and PS-SO3H also downregulated nitrogen fixation, nitrogen cycle metabolic process, oxidoreductase activity, etc. In addition, both nanoplastics decreased the protein contents in the extracellular polymer substances (EPS), with distinct binding sequences to the functional groups of the EPS. The single particle atomic force microscopy revealed that the force between the amino group and the M. acetivorans C2A was greater than that of sulfonic acid group. Our results exhibit that the surface groups of polystyrene nanoparticles control their risk on the methanogenic archaea, and these effects might influence their contribution on global methane emission.


Asunto(s)
Methanosarcina , Nanopartículas , ADN/metabolismo , Metano/metabolismo , Methanomicrobiales/metabolismo , Methanosarcina/genética , Microplásticos , Nitrógeno/metabolismo , Oxidorreductasas , Poliestirenos , Ácidos Sulfónicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA