Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 98(4): 597-614, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040688

RESUMEN

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.


Asunto(s)
Regiones no Traducidas 3'/genética , Axones/patología , Filamentos Intermedios/genética , Neuronas Motoras/patología , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , Mutación del Sistema de Lectura , Humanos , Filamentos Intermedios/metabolismo , Ratones , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Mutación , Linaje , Pez Cebra/genética
2.
Am J Hum Genet ; 95(5): 590-601, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439726

RESUMEN

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Adulto , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/patología , Mapeo Cromosómico , Femenino , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Linaje , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Nervio Sural/patología
3.
J Peripher Nerv Syst ; 20(2): 67-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26114802

RESUMEN

Mitofusin 2 (MFN2) mutations are the most common cause of axonal Charcot-Marie-Tooth disease (CMT2). The majority are inherited in an autosomal dominant manner but recessive and semi-dominant kindreds have also been described. We previously reported a deletion of exons 7 and 8 resulting in nonsense-mediated decay, segregating with disease when present in trans with another pathogenic MFN2 mutation. Detailed clinical and electrophysiological data on a series of five affected patients from four kindreds and, when available, their parents and relatives were collected. MFN2 Sanger sequencing, multiplex ligation probe amplification, and haplotype analysis were performed. A severe early-onset CMT phenotype was seen in all cases: progressive distal weakness, wasting, and sensory loss from infancy or early childhood. Optic atrophy (four of five) and wheelchair dependency in childhood were common (four of five). All were compound heterozygous for a deletion of exons 7 and 8 in MFN2 with another previously reported pathogenic mutation (Phe216Ser, Thr362Met, and Arg707Trp). Carrier parents and relatives were unaffected (age range: 24-82 years). Haplotype analysis confirmed that the deletion had a common founder in all families.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Deleción Cromosómica , Inglaterra , Exones , Humanos , Persona de Mediana Edad , Linaje , Gales , Adulto Joven
4.
Neurology ; 83(7): 612-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25008398

RESUMEN

OBJECTIVE: To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). METHODS: KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. RESULTS: Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. CONCLUSION: This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Cinesinas/genética , Mutación , Paraplejía Espástica Hereditaria/genética , Adulto , Niño , Exones , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/genética , Linaje , Fenotipo , Análisis de Secuencia de ADN
5.
Neurology ; 79(11): 1145-54, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22933740

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN). METHODS: A total of 442 probands with CMT type 2 (CMT2) (270) and dHMN (172) were screened for MT-ATP6/8 mutations after exclusion of mutations in known CMT2/dHMN genes. Mutation load was quantified using restriction endonuclease analysis. Blue-native gel electrophoresis (BN-PAGE) was performed to analyze the effects of m.9185T>C on complex V structure and function. RESULTS: Three further probands with CMT2 harbored the m.9185T>C mutation. Some relatives had been classified as having dHMN. Patients could be separated into 4 groups according to their mutant m.9185T>C levels. BN-PAGE demonstrated both impaired assembly and reduced activity of the complex V holoenzyme. CONCLUSIONS: We have shown that m.9185T>C in MT-ATP6 causes CMT2 in 1.1% of genetically undefined cases. This has important implications for diagnosis and genetic counseling. Recognition that mutations in MT-ATP6 cause CMT2 enhances current understanding of the pathogenic basis of axonal neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , ADN Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Adolescente , Adulto , Anciano de 80 o más Años , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Femenino , Genotipo , Neuropatía Hereditaria Motora y Sensorial/genética , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA