Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Prosthet Dent ; 129(6): 939-945, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34598769

RESUMEN

STATEMENT OF PROBLEM: Occlusal devices can be either conventionally processed, milled, or printed. However, little is known about the biocompatibility of 3D printing resin materials. PURPOSE: The purpose of this in vitro study was to compare the viability and morphology of human gingival fibroblast cells (HFG-1) after cultivation on conventionally processed, milled, and printed occlusal device materials with different surface treatments. MATERIAL AND METHODS: Disks of a conventionally processed (PalaXpress Clear [pP]), milled (Yamahachi PMMA Clear [sY]), and 2 different printed materials (Dental LT Clear Resin [aD]; Freeprint splint [aF]) were prepared. The surfaces of the specimens were finished by using 2 different treatments (unpolished and polished with P1200-grit silicon carbide paper). HGF-1 cells were cultivated on the specimens for 24 hours, and a viability assay was performed by using polystyrene disks as a control (n=9 disks per group). Cell morphology and the topography of the specimens were examined with scanning electron microscopy (n=3 disks per group). Two-way analysis of variance was applied to determine the effect of material and surface treatment followed by the post hoc Fisher least significant difference test (α=.05). RESULTS: Overall, material (P<.001) and surface treatment (P<.001) significantly influenced the viability of HGF-1 cells. The viability of cells on all specimens displayed mean values between 0.85 and 1.01 compared with the control except for unpolished aD (0.00 ±0.07) and aF (0.02 ±0.05) that had only a few cells with a round shape. CONCLUSIONS: The behavior of HGF-1 cells on conventionally processed and milled specimens was similar and not dependent on the surface treatment. Unpolished printed specimens had a cytotoxic effect. However, after polishing, cell behavior was similar to that of the conventionally processed and milled specimens.


Asunto(s)
Materiales Dentales , Impresión Tridimensional , Humanos , Ensayo de Materiales , Fibroblastos , Propiedades de Superficie
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445228

RESUMEN

Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today's craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.


Asunto(s)
Benzofenonas , Sistemas de Atención de Punto , Polímeros , Impresión Tridimensional , Prótesis e Implantes , Cráneo/lesiones , Humanos , Procedimientos de Cirugía Plástica
3.
J Prosthet Dent ; 124(6): 780-786, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31955837

RESUMEN

STATEMENT OF PROBLEM: Comparisons of the material qualities of pressed, milled, and 3D-printed occlusal devices are sparse, complicating informed decisions on material choice. PURPOSE: The purpose of this in vitro study was to compare the material properties of pressed, milled, and 3D-printed resins, as well as how these are affected by thermal aging. These data were then used to estimate the likely clinical performance of the tested materials. MATERIAL AND METHODS: Three pressed (ProBase Cold; Ivoclar Vivadent AG, Palapress clear; Kulzer GmbH, Aesthetic Blue clear; Candulor), 3 milled (Temp Premium Flexible Transpa; Zirkonzahn, idodentine PMMA transparent; Unión Dental S.A., Yamahachi PMMA clear; Yamahachi Dental MFG), and three 3D-printed (Freeprint splint; DETAX GmbH, LuxaPrint Ortho Plus; DMG GmbH, Nextdent Ortho Clear; Vertex-Dental B.V.) resin materials were evaluated. Flexural strength, Martens hardness (HM), Vickers hardness (HV), water sorption, water solubility, and surface topography were analyzed. The tests were carried out after 50 hours of water storage at 37 °C (baseline) and after simulated aging (50 hours of water storage at 37 °C, followed by 20 000 thermocycles [TC] at 5 °C and 55 °C). RESULTS: At baseline, the mean flexural strength values were 92.8 to 99.5 MPa for pressed, 95.1 to 122.0 MPa for milled, and 19.5 to 91.3 MPa for 3D-printed materials. After aging, these values were 87.6 to 93.5 MPa for pressed, 93.1 to 116.0 MPa for milled, and 13.0 to 63.3 MPa for 3D-printed resins. The mean HM values were 130.1 to 134.1 N/mm for pressed and 130.3 to 158.5 N/mm for milled resins. After aging, the mean HM ranged from 121.6 to 124.2 N/mm for pressed and 116.2 to 149.7 N/mm for milled resins. The mean HV values were 18.2 to 19.9 for pressed and 18.4 to 23.0 for milled resins before aging and 16.9 to 18.7 for pressed and 17.3 to 22.3 N/mm for milled resins after aging. Printed resins could not be measured. At baseline, the mean modulus of elasticity ranged from 4.6 to 4.8 GPa for pressed and from 4.7 to 5.3 GPa for milled resins. For 3D-printed resins, only 1 material could be measured (3.7 GPa). The mean sorption values were 8.6 to 9.2 µg/mm3 for pressed, 7.9 to 10.5 µg/mm3 for milled, and 9.2 to 21.2 µg/mm3 for additive resins. After aging, these values were 21.1 to 22.6 µg/mm3 for pressed, 20.5 to 23.7 µg/mm3 for milled, and 19.4 to 45.5 µg/mm3 for 3D-printed resins. The mean solubility values ranged from 0.3 to 1.4 µg/mm3 for pressed, 0.4 to 1.7 µg/mm3 for milled, and -3.5 to 11 µg/mm3 for 3D-printed materials. CONCLUSIONS: Pressed and milled resins can be considered equivalent in terms of their material properties. Relative to the pressed and milled resins, the 3D-printed resins had lower flexural strength and hardness values and higher water sorption and solubility.


Asunto(s)
Resinas Compuestas , Estética Dental , Materiales Dentales , Resistencia Flexional , Dureza , Ensayo de Materiales , Impresión Tridimensional , Estrés Mecánico , Propiedades de Superficie
4.
Plast Reconstr Surg ; 153(2): 462-465, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184464

RESUMEN

SUMMARY: Documenting complex three-dimensional (3D) cleft lip and palate malformation with plaster casts based on maxillary impressions is standard care. Presurgical orthopedic treatment also requires an impression. Digital impression-taking in patients with cleft lip and palate is feasible, but procurement costs hinder clinical implementation. Individualized impression trays allow for a precise impression, limiting airway risk. The authors present an open-source impression tray library with scalable impression trays not requiring 3D modeling knowledge. The cleft lip and palate impression tray library is accessible on Open Science Framework. Different shapes are available, and the tray size is selected based on the tuber distance. This allows 3D printing with biocompatible material at the point of care complying with local regulations. The open-source cleft tray library presented offers a hybrid solution for cleft centers, pending the implementation of digital impression.


Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Labio Leporino/cirugía , Fisura del Paladar/cirugía , Flujo de Trabajo , Impresión Tridimensional , Técnica de Impresión Dental
5.
J Clin Med ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892877

RESUMEN

Background: Temporomandibular disease (TMD) is commonly seen, and divers also experience pain in the temporomandibular joint (TMJ) or masticatory muscles. This article aims to provide a tool for diving physicians or medical professionals involved in diving medicine since jaw pain among divers is a pertinent subject and can be challenging to evaluate without some background in dentistry or maxillofacial surgery. Method: A basic algorithm was developed to provide a tool to differentiate jaw pains experienced by divers. Three brief case studies were developed, and five diving physicians were tasked with diagnosing the cases using the algorithm. Additionally, simple exercises and massage techniques that can benefit patients with TMD, particularly immediately after diving, are outlined. Results: All five diving physicians successfully diagnosed the cases using the algorithm. However, three of them were unable to diagnose the first case (disc luxation) without consulting the algorithm. Nevertheless, all physicians acknowledged the utility of the algorithm. Conclusions: Jaw pain in divers can stem from diverse causes, but effective treatment options exist. Our study findings provide valuable insights to assist diving physicians in making accurate diagnoses and guiding appropriate patient management, which may include referrals to specialists such as dentists, maxillofacial surgeons, or orthodontists.

6.
J Clin Med ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930123

RESUMEN

Background/Objective: With the rapid advancement in surgical technologies, new workflows for mandibular reconstruction are constantly being evaluated. Cutting guides are extensively employed for defining osteotomy planes but are prone to errors during fabrication and positioning. A virtually defined osteotomy plane and drilling holes in robotic surgery minimize potential sources of error and yield highly accurate outcomes. Methods: Ten mandibular replicas were evaluated after cutting-guided saw osteotomy and robot-guided laser osteotomy following reconstruction with patient-specific implants. The descriptive data analysis summarizes the mean, standard deviation (SD), median, minimum, maximum, and root mean square (RMS) values of the surface comparison for 3D printed models regarding trueness and precision. Results: The saw group had a median trueness RMS value of 2.0 mm (SD ± 1.7) and a precision of 1.6 mm (SD ± 1.4). The laser group had a median trueness RMS value of 1.2 mm (SD ± 1.1) and an equal precision of 1.6 mm (SD ± 1.4). These results indicate that robot-guided laser osteotomies have a comparable accuracy to cutting-guided saw osteotomies, even though there was a lack of statistical significance. Conclusions: Despite the limited sample size, this digital high-tech procedure has been shown to be potentially equivalent to the conventional osteotomy method. Robotic surgery and laser osteotomy offers enormous advantages, as they enable the seamless integration of precise virtual preoperative planning and exact execution in the human body, eliminating the need for surgical guides in the future.

7.
Dent Mater ; 40(4): 674-688, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388252

RESUMEN

OBJECTIVE: Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS: In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS: Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE: This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.


Asunto(s)
Abietanos , Benzofenonas , Implantes Dentales , Osteogénesis , Polímeros , Polietilenglicoles/farmacología , Polietilenglicoles/química , Cetonas/farmacología , Cetonas/química , Antibacterianos/farmacología , Antibacterianos/química , Impresión Tridimensional , Propiedades de Superficie
8.
Bioengineering (Basel) ; 10(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37237673

RESUMEN

Medical image segmentation, whether semi-automatically or manually, is labor-intensive, subjective, and needs specialized personnel. The fully automated segmentation process recently gained importance due to its better design and understanding of CNNs. Considering this, we decided to develop our in-house segmentation software and compare it to the systems of established companies, an inexperienced user, and an expert as ground truth. The companies included in the study have a cloud-based option that performs accurately in clinical routine (dice similarity coefficient of 0.912 to 0.949) with an average segmentation time ranging from 3'54″ to 85'54″. Our in-house model achieved an accuracy of 94.24% compared to the best-performing software and had the shortest mean segmentation time of 2'03″. During the study, developing in-house segmentation software gave us a glimpse into the strenuous work that companies face when offering clinically relevant solutions. All the problems encountered were discussed with the companies and solved, so both parties benefited from this experience. In doing so, we demonstrated that fully automated segmentation needs further research and collaboration between academics and the private sector to achieve full acceptance in clinical routines.

9.
J Clin Med ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675567

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a potentially preventable adverse side effect of mainly antiresorptive drugs. MRONJ is expected to become a growing clinical problem due to the aging population and the increasing number of patients requiring antiresorptive agents. Knowledge and awareness about MRONJ and elimination of the oral and dental risk factors before starting antiresorptive therapy (AR) are fundamental to reducing the incidence of MRONJ. In urology, ARs are used primarily in patients suffering from bone metastases due to prostate cancer and to prevent cancer-treatment-induced bone loss (CTIBL) in prostate cancer patients receiving endocrine therapy. This postal survey aimed to evaluate disease-related knowledge and awareness about implementing oral examinations for patients starting AR among Swiss, German, and Austrian urologists. A total of 176 urologists returned the completed questionnaire, yielding a response rate of 11.7%. Of the respondents, 44.9% (n = 79) and 24.4% (n = 43) stated that they give more than five first-time prescriptions of denosumab and of intravenous or oral bisphosphonates per year, respectively. Only 14.8% (n = 26) of the participating urologists had never encountered MRONJ cases related to BPs. Of the participants, 89.8% (n = 158) had implemented referrals to dentists for oral examination before initiating AR. The mean percentage of correct answers regarding the knowledge about MRONJ was 70.9% ± 11.2%. In contrast to previous surveys on MRONJ among physicians, this study showed that the participating urologists were sufficiently informed about MRONJ, as reflected by the high number of participants implementing preventive dental screenings.

10.
J Clin Med ; 12(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37109288

RESUMEN

This study aimed to evaluate the availability and use of dental and maxillofacial emergency algorithms in Swiss hospitals. A survey was performed among physicians at Swiss emergency departments (ED) and participants of the "36th Annual Meeting of the Society for Oral and Cranio-Maxillofacial Surgery". Eighty-nine EDs in Switzerland were questioned about the availability and use of electronic algorithms in their hospitals. Eighty-one (91%) participated in the study. In 75 (93%) of the EDs, electronic algorithms are used, mainly "medStandards". Six have no available algorithms. Fifty-two (64%) use algorithms daily. Eight (10%) Swiss EDs have maxillofacial and dental algorithms, and 73 (90%) have no access to or do not know about them. For dental algorithms, 28 (38%) of the respondents would like to have access, and 16 (22%) do not desire access. For maxillofacial algorithms, 23 (32%) want to have access and 21 (29%) do not want it. Most (74%) of the participating maxillofacial surgeons did not know about the existence of ED algorithms regarding their specialty. Our study shows that the existence of specific algorithms is often not known. Furthermore, there is a demand for dental and maxillofacial algorithms in Swiss EDs.

11.
Oral Maxillofac Surg ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516667

RESUMEN

OBJECTIVES: This study aimed to compare the reconstruction with type 2.4 and three-dimensional (3D) grid plates relating the areas of weakness to anatomical regions of force incidence in atrophic mandibles with and without segmentation using finite element analysis (FEA). MATERIALS AND METHODS: Strength and force quality in the mandible were also determined. The atrophic mandible models with and without segmentation were divided into four groups, and the behavior of each plate was analyzed using finite element analysis. In the atrophic mandible without segmentation using the type 2.4 reconstruction plate, the highest stress concentration in the plate was observed in the posterior region of the mandibular body and in the grid type 3D reconstruction plate was observed in the mandibular angle. RESULTS: In the segmented atrophic mandible with the 2.4 reconstruction plate, higher stress concentration was observed in the mandibular segment defect. Analysis of the 3D grid-like reconstruction plate revealed that the geometry of the plate conferred greater stiffness to the assembly, as the most significant stress concentration was observed at the mandibular angle. CONCLUSION: The width of the plate design may influence the strength, not the thickness.

12.
J Funct Biomater ; 13(4)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547548

RESUMEN

Three-dimensionally printed polyetheretherketone (PEEK) materials are promising for fabricating customized dental abutments. This study aimed to investigate the adhesive property of a 3D-printed PEEK material. The effects of surface treatment and temporary crown materials on shear bond strength were evaluated. A total of 108 PEEK discs were 3D printed by fused-filament fabrication. Surface treatments, including sandblasting, abrasive paper grinding, and CO2 laser ablation, were applied to the PEEK discs, with the untreated specimens set as the control. Afterward, the surface topographies of each group were investigated by scanning electron microscopy (SEM, n = 1) and roughness measurements (n = 7). After preparing the bonding specimens with three temporary crown materials (Artificial teeth resin (ATR), 3M™ Filtek™ Supreme Flowable Restorative (FR), and Cool Temp NATURAL (CTN)), the shear bond strength was measured (n = 6), and the failure modes were analyzed by microscopy and SEM. The results showed that ATR exhibited a significantly higher shear bond strength compared to FR and CTN (p < 0.01), and the PEEK surfaces treated by sandblasting and abrasive paper grinding showed a statistically higher shear bond strength compared to the control (p < 0.05). For clinical application, the ATR material and subtractive surface treatments are recommended for 3D-printed PEEK abutments.

13.
Dent Mater ; 38(7): 1083-1098, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35562293

RESUMEN

OBJECTIVE: The objective of this study was to determine the effect of two plasma surface treatments on the biologic responses of PEEK medical implants manufactured by fused filament fabrication (FFF) 3D printing technology. METHODS: This study created standard PEEK samples using an FFF 3D printer. After fabrication, half of the samples were polished to simulate a smooth PEEK surface. Then, argon (Ar) or oxygen (O2) plasma was used to modify the bioactivity of FFF 3D printed and polished PEEK samples. Scanning electron microscopy (SEM) and a profilometer were used to determine the microstructure and roughness of the sample surfaces. The wettability of the sample surface was assessed using a drop shape analyzer (DSA) after plasma treatment and at various time points following storage in a closed environment. Cell adhesion, metabolic activity, proliferation, and osteogenic differentiation of SAOS-2 osteoblasts were evaluated to determine the in vitro osteogenic activity. RESULTS: SEM analysis revealed that several spherical nanoscale particles and humps appeared on sample surfaces following plasma treatment. The wettability measurement demonstrated that plasma surface treatment significantly increased the surface hydrophilicity of PEEK samples, with only a slight aging effect found after 21 days. Cell adhesion, spreading, proliferation, and differentiation of SAOS-2 osteoblasts were also up-regulated after plasma treatment. Additionally, PEEK samples treated with O2 plasma demonstrated a higher degree of bioactivation than those treated with Ar. SIGNIFICANCE: Plasma-modified PEEK based on FFF 3D printing technology was a feasible and prospective bone grafting material for bone/dental implants.


Asunto(s)
Productos Biológicos , Implantes Dentales , Argón , Benzofenonas , Cetonas/química , Osteogénesis , Polietilenglicoles/química , Polímeros , Impresión Tridimensional , Estudios Prospectivos , Propiedades de Superficie
14.
Children (Basel) ; 9(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36010151

RESUMEN

Cleft lip and palate are one of the most common congenital craniofacial malformations. As an initial treatment, presurgical orthopedics is considered standard treatment at many cleft centers. Digital impressions are becoming feasible in cleft care. Computer-aided design (CAD) and three-dimensional (3D) printing are manufacturing standards in dentistry. The assimilation of these technologies has the potential to alter the traditional workflow for the fabrication of customized presurgical orthopedic plates. We present a digital workflow comprising three steps: 3D digital image acquisition with an intraoral scanner, open-source CAD modeling, and point-of-care 3D printing for the fabrication of personalized passive presurgical plates for newborns with cleft lip and palate. The digital workflow resulted in patient-related benefits, such as no risk of airway obstruction with quicker data acquisition (range 1-2.5 min). Throughput time was higher in the digital workflow 260-350 min compared to 135 min in the conventional workflow. The manual and personal intervention time was reduced from 135 min to 60 min. We show a clinically useful digital workflow for presurgical plates in cleft treatment. Once care providers overcome procurement costs, digital impressions, and point-of-care 3D printing will simplify these workflows and have the potential to become standard for cleft care.

15.
J Biomed Mater Res B Appl Biomater ; 109(11): 1924-1941, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33856114

RESUMEN

Additive manufacturing (AM) of high temperature polymers, specifically polyaryletherketones (PAEK), is gaining significant attention for medical implant applications. As 3D printing systems evolve toward point of care manufacturing, research on this topic continues to expand. Specific regulatory guidance is being developed for the safe management of 3D printing systems in a hospital environment. PAEK implants can benefit from many advantages of AM such as design freedom, material and antibacterial drug incorporation, and enhanced bioactivity provided by cancellous bone-like porous designs. In addition to AM PAEK bioactivity, the biomechanical strength of 3D printed implants is crucial to their performance and thus widely studied. In this review, we discuss the printing conditions that have been investigated so far for additively manufactured PAEK implant applications. The effect of processing parameters on the biomechanical strength of implants is summarized, and the bioactivity of PAEKs, along with material and drug incorporation, is also covered in detail. Finally, the therapeutic areas in which 3D printed PAEK implants are investigated and utilized are reviewed.


Asunto(s)
Materiales Biocompatibles/química , Sustitutos de Huesos/química , Oseointegración , Polímeros/química , Impresión Tridimensional , Prótesis e Implantes , Humanos , Porosidad
16.
World Neurosurg ; 148: e356-e362, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418118

RESUMEN

BACKGROUND: To develop a novel 3D-printer-assisted method to fabricate patient-specific implants for cranioplasty and to demonstrate its feasibility and its use in 16 consecutive cases. METHODS: We report on 16 consecutive patients who have undergone cranioplasty surgery for an extensive skull defect after decompressive surgery and in which the bone flap was not available. We present the workflow for the implant production using a 3D-printer-assisted molding technique. Preoperative, intraoperative, and postoperative data were analyzed/evaluated. RESULTS: Eleven out of our 16 patients (68.7%) presented with extensive hemispheric bone defects. Indication for initial craniotomy were traumatic brain injury (4; 25%), acute subdural hematoma (4; 25%), ischemic stroke (3; 18.8%), tumor (3; 18.8%), and ruptured aneurysm (2; 12.5%). Median (range) operation time was 121 (89-206) minutes. Median (range) intraoperative blood loss was 300 (100-3300) mL. The mean (range) follow-up period is 6 (0-21) months. Complications occurred in 7 out of our 16 patients (43.8%), in 6 (37.5%) of which a reoperation was required to evacuate an extra-axial hematoma (3; 50%), for shunting of an epidural fluid collection (1; 16.7%), or for skin flap necrosis (1; 16.7%). One patient (16.7%) developed a chronic asymptomatic subdural fluid collection that was stable over the follow-up period. CONCLUSIONS: Our workflow to intraoperatively produce patient-specific implants in a timely manner to cover cranial defects proved to be feasible. The results are cosmetically appealing, and postoperative CT scans show well-fitting implants. As implantable printable substrates are already available, we aim to advance and certify 3D-printed patient-specific implants in the near future.


Asunto(s)
Craniectomía Descompresiva , Procedimientos de Cirugía Plástica/métodos , Impresión Tridimensional , Prótesis e Implantes , Cráneo/cirugía , Adulto , Anciano , Análisis Costo-Beneficio , Femenino , Estudios de Seguimiento , Hematoma/etiología , Hematoma/cirugía , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Polimetil Metacrilato , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Impresión Tridimensional/economía , Prótesis e Implantes/economía , Diseño de Prótesis , Colgajos Quirúrgicos , Tomografía Computarizada por Rayos X , Adulto Joven
17.
J Plast Reconstr Aesthet Surg ; 73(1): 98-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31711860

RESUMEN

BACKGROUND: Precise, expensive individual saw guides are used with increasing frequency for the reconstruction of mandibular defects with fibular grafts. In this report, an alternative is presented - the Multiuse Cutting Jig (MUC-Jig, proprietary development). It is reusable, suitable for all patients, requires simple planning based on conventional CT imaging, and is more economical. METHODS: To investigate its precision, we conducted a nonblinded experimental study, with ten participating craniomaxillofacial surgeons. Osteotomies of four different fibula segments were carried out at the same angulation, with groups defined according to the proximal and distal fixed angulation: 45°, 30°, 15°, or 0°. The sagittal cut was performed proximally, with the coronal cut performed distally. The resulting 40 segments (n = 40) were analyzed with their Tx length (primary endpoint) and osteotomy angles, and compared to the original planning. RESULTS: The mean (SD) relative deviation of all grafts from the original planning was -0.08 mm (1.12) in length and -0.71° (3.15) for the angle. Only 45° (-2.04 ±â€¯3.71°) and 30° (-1.07 ±â€¯2.52°) cuts differed significantly (p < 0.05) from smaller angle grafts. The mean (SD) absolute deviation was 0.81 mm (0.27) in length and 2.13° (0.93) in graft angles. For individual transplants, 45° cuts (1.28 ±â€¯1.03 mm) differed significantly (p < 0.005) from others. We observed no differences in relative length or absolute angle deviation. CONCLUSIONS: The MUC-Jig is precise and cost-effective for osteotomies with medium angles and smooth reconstructions of template-guided procedures.


Asunto(s)
Peroné/trasplante , Colgajos Tisulares Libres , Reconstrucción Mandibular/instrumentación , Osteotomía/instrumentación , Trasplante Óseo/instrumentación , Angiografía por Tomografía Computarizada , Diseño de Equipo , Humanos , Invenciones , Mandíbula/cirugía , Modelos Anatómicos , Impresión Tridimensional , Instrumentos Quirúrgicos
18.
Dent J (Basel) ; 8(3)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748890

RESUMEN

Rapidly developing digital dental technologies have substantially simplified the documentation of plaster dental models. The large variety of available scanners with varying degrees of accuracy and cost, however, makes the purchase decision difficult. This study assessed the digitization accuracy of a cone-beam computed tomography (CBCT) and an intraoral scanner (IOS), as compared to a desktop optical scanner (OS). Ten plaster dental models were digitized three times (n = 30) with each scanner. The generated STL files were cross-compared, and the RMS values were calculated. Conclusions were drawn about the accuracy with respect to precision and trueness levels. The precision of the CBCT scanner was similar to the desktop OS reference, which both had a median deviation of 0.04 mm. The IOS had statistically significantly higher deviation compared to the reference OS, with a median deviation of 0.18 mm. The trueness values of the CBCT was also better than that of IOS-median differences of 0.14 and 0.17 mm, respectively. We conclude that the tested CBCT scanner is a highly accurate and user-friendly scanner for model digitization, and therefore a valuable alternative to the OS. The tested IOS was generally of lower accuracy, but it can still be used for plaster dental model digitization.

19.
J Clin Med ; 9(12)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419329

RESUMEN

Individual cutting guides for the reconstruction of lower jaw defects with fibular grafts are often used. However, the application of these osteotomy tools is costly and time intensive. The aim of this study was to compare the precision of osteotomies using a 3D-printed guide with those using a universal, reusable, and more cost-efficient Multi-Use Cutting Jig (MUC-Jig). In this non-blinded experimental study, 10 cranio-maxillofacial surgeons performed four graft removals each in a randomized order using the same osteotomy angle, both proximally (sagittal cut) and distally (coronal cut), of a graft (45°, 30°, 15°, or 0°), first with the MUC-Jig then with the 3D-printed cutting guide. The 40 fibula transplants (Tx) of each method (n = 80) were then analyzed concerning their Tx length and osteotomy angles and compared to the original planning data. Furthermore, the surgeons' subjective perception and the duration of the two procedures were analyzed. The mean relative length and mean relative angle deviation between the MUC-Jig (-0.08 ± 1.12 mm; -0.69° ± 3.15°) and the template (0.22 ± 0.90 mm; 0.36° ± 2.56°) group differed significantly (p = 0.002; p = < 0.001), but the absolute deviations did not (p = 0.206; p = 0.980). Consequently, clinically comparable osteotomy results can be achieved with both methods, but from an economic point of view the MUC-Jig is a more cost-efficient solution.

20.
J Clin Med ; 9(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192099

RESUMEN

With the rapid progression of additive manufacturing and the emergence of new 3D printing technologies, accuracy assessment is mostly being performed on isosymmetric test bodies. However, the accuracy of anatomic models can vary. The dimensional accuracy of root mean square values in terms of trueness and precision of 50 mandible replicas, printed with five common printing technologies, were evaluated. The highest trueness was found for the selective laser sintering printer (0.11 ± 0.016 mm), followed by a binder jetting printer (0.14 ± 0.02 mm), and a fused filament fabrication printer (0.16 ± 0.009 mm). However, highest precision was identified for the fused filament fabrication printer (0.05 ± 0.005 mm) whereas other printers had marginally lower values. Despite the statistically significance (p < 0.001), these differences can be considered clinically insignificant. These findings demonstrate that all 3D printing technologies create models with satisfactory dimensional accuracy for surgical use. Since satisfactory results in terms of accuracy can be reached with most technologies, the choice should be more strongly based on the printing materials, the intended use, and the overall budget. The simplest printing technology (fused filament fabrication) always scored high and thus is a reliable choice for most purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA