Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 39(8): e1800026, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29516614

RESUMEN

A facile method is reported for rapid, room-temperature synthesis of block copolymers (BCP) of complex morphology and hence nontraditional spherical assembly. The use of solvated electrons generates radical anions on olefinic monomers, and with a felicitous choice of monomer pairs, this species will propagate bimechanistically (via radical and the anion) to form BCPs. Molecular weight of the obtained BCP range from Mw = 97 000-404 000 g mol-1 (polydispersity index, PDI = 1.4-3.0) depending on monomer pairs. The composition of the blocks can be controlled by changing monomer ratio, with the caveat that yield is affected. Detailed characterization by 2D nuclear magnetic resonance spectroscopy, differential scanning calorimetry (DSC), and analysis of the mechanisms involved indicate the structure of obtained block copolymers to be at least a triblock with a complex central unit. Evaluating trends in the Hammett parameter segregates monomer pairs into "armed and disarmed" groups with respect to radical or anionic polymerization akin to oligosaccharides synthesis.


Asunto(s)
Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Polímeros/química , Polímeros/síntesis química , Rastreo Diferencial de Calorimetría , Estructura Molecular , Polimerizacion , Temperatura
2.
J Am Chem Soc ; 134(26): 10876-84, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22676159

RESUMEN

This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.


Asunto(s)
Aleaciones/química , Amidas/química , Etilenos/química , Transporte Biológico , Electroquímica/métodos , Electrónica , Galio , Indio , Plata/química , Compuestos de Sulfhidrilo
3.
Mater Horiz ; 8(3): 925-931, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821322

RESUMEN

Thin passivating surface oxide layers on metal alloys form a dissipation horizon between dissimilar phases, hence harbour an inherent free energy and composition gradient. We exploit this gradient to drive order and selective surface separation (speciation), enabling redox-driven enrichment of the core by selective conversion of low standard reduction potential (E°) components into oxides. Coupling this oxide growth to volumetric changes during solidification allows us to create oxide crystallites trapped in a metal ('ship-in-a-bottle') or extrusion of metal fingerlings on the heavily oxidized particle. We confirm the underlying mechanism through high temperature X-ray diffraction and characterization of solidification-trapped particle states. We demonstrate that engineering the passivating surface oxide can lead to purification via selective dealloying with concomitant enrichment of the core, leading to disparate particle morphologies.


Asunto(s)
Aleaciones , Óxidos , Oxidación-Reducción , Difracción de Rayos X
5.
ACS Nano ; 6(6): 4806-22, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22548354

RESUMEN

The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.


Asunto(s)
Galio/química , Indio/química , Membranas Artificiales , Microelectrodos , Conductividad Eléctrica , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Ensayo de Materiales , Conformación Molecular , Soluciones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA