Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Total Environ ; 857(Pt 2): 159441, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252660

RESUMEN

Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of µg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Polietileno , Tetraciclina/farmacología , Biopelículas , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Microbiana , Bacterias
2.
Bioresour Technol ; 370: 128532, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574886

RESUMEN

An anaerobic membrane bioreactor (AnMBR) with media is an emerging carbon-neutral biotechnology for low-strength wastewater (LSWW) treatment and methane recovery. Understanding metabolic dynamics among methanogens and syntrophic bacteria is important in optimizing the design and operation of AnMBR. However, little is known about it, especially in media-attached microbial communities. This study explored metabolic dynamics to compare media-attached and suspended conditions. Accordingly, metagenomes and metatranscriptomes from AnMBRs with polymeric media and fed with different influent concentrations (350 and 700 mg-COD/L) were analyzed. Metabolic dynamics were profoundly influenced by the different growth habitats and influent conditions, although the applied influent concentrations are within the range of typical LSWW. Metabolic dynamics prediction results suggest that media-attached-growth habitats may have provided a more favorable microenvironment for methanogens to grow and produce methane, especially under low influent conditions. These findings provide significant implications for optimizing floating media design and operation of AnMBR-producing methane from LSWW.


Asunto(s)
Euryarchaeota , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Metano/metabolismo , Reactores Biológicos/microbiología , Euryarchaeota/metabolismo , Membranas Artificiales
3.
Biomed Microdevices ; 14(4): 769-78, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22566273

RESUMEN

Inexpensive, portable, and easy-to-use devices for rapid detection of microbial pathogens are needed to ensure safety of water and food. In this study, a disposable polymer microfluidic chip for quantitative detection of multiple pathogens using isothermal nucleic acid amplification was developed. The chip contains an array of 15 interconnected reaction wells with dehydrated primers for loop-mediated isothermal amplification (LAMP), and requires only a single pipetting step for dispensing of sample. To improve robustness of loading and amplification, hydrophobic air vents and microvalves were monolithically integrated in the multi-layered structure of the chip using an inexpensive knife plotter. For quantification, LAMP was performed with a highly fluorescent DNA binding dye (SYTO-82) and the reactions monitored in real-time using a low-cost fluorescence imaging system previously developed by our group (Ahmad et al., Biomed. Microdevices 13(5), 929-937). Starting from genomic DNA mixtures, the chip was successfully evaluated for rapid analysis of multiple virulence and marker genes of Salmonella, Campylobacter jejuni, Shigella, and Vibrio cholerae, enabling detection and quantification of 10-100 genomes per µl in less than 20 min. It is anticipated that the microfluidic chip, along with the real-time imaging system, may be a key enabling technology for developing inexpensive and portable systems for on-site screening of multiple pathogens relevant to food and water safety.


Asunto(s)
Contaminación de Alimentos/análisis , Microbiología de Alimentos/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Polímeros , Espectrometría de Fluorescencia/instrumentación , Microbiología del Agua , Contaminantes del Agua/aislamiento & purificación , Límite de Detección , Técnicas Analíticas Microfluídicas/economía , Factores de Tiempo
4.
Microbiome ; 8(1): 84, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503635

RESUMEN

BACKGROUND: In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS: The ß-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS: Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.


Asunto(s)
Lignina , Proteobacteria , Microbiología del Suelo , Alaska , Burkholderia/metabolismo , Cambio Climático , Calor , Lignina/metabolismo , Hielos Perennes , Proteobacteria/metabolismo , Suelo/química , Tundra
5.
Nat Commun ; 11(1): 4897, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994415

RESUMEN

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5-19%, and reduces model parametric uncertainty by 55-71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


Asunto(s)
Carbono/análisis , Metagenoma/genética , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Aclimatación/genética , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Celulosa/metabolismo , ADN Ambiental/genética , ADN Ambiental/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Calentamiento Global , Pradera , Calor/efectos adversos , Metagenómica , Modelos Genéticos , Raíces de Plantas/química , Poaceae/química
6.
Science ; 356(6345)2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28663443

RESUMEN

Cellulosic crops are projected to provide a large fraction of transportation energy needs by mid-century. However, the anticipated land requirements are substantial, which creates a potential for environmental harm if trade-offs are not sufficiently well understood to create appropriately prescriptive policy. Recent empirical findings show that cellulosic bioenergy concerns related to climate mitigation, biodiversity, reactive nitrogen loss, and crop water use can be addressed with appropriate crop, placement, and management choices. In particular, growing native perennial species on marginal lands not currently farmed provides substantial potential for climate mitigation and other benefits.


Asunto(s)
Biocombustibles , Conservación de los Recursos Naturales , Productos Agrícolas/metabolismo , Lignina/metabolismo , Clima , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes , Nitrógeno , Plantas/microbiología
7.
Bioresour Technol ; 147: 212-220, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999256

RESUMEN

To minimize the change of lignocellulosic hydrolysate composition during storage, the effects of storage conditions (temperature, pH and time) on the composition and fermentability of hydrolysate prepared from AFEX™ (Ammonia Fiber Expansion - a trademark of MBI, Lansing, MI) pretreated corn stover were investigated. Precipitates formed during hydrolysate storage increased with increasing storage pH and time. The precipitate amount was the least when hydrolysate was stored at 4 °C and pH 4.8, accounting for only 0.02% of the total hydrolysate weight after 3-month storage. No significant changes of NMR (Nuclear Magnetic Resonance) spectra and concentrations of sugars, minerals and heavy metals were observed after storage under this condition. When pH was adjusted higher before fermentation, precipitates also formed, consisting of mostly struvite (MgNH4PO4·6H2O) and brushite (CaHPO4·2H2O). Escherichia coli and Saccharomyces cerevisiae fermentation studies and yeast cell growth assays showed no significant difference in fermentability between fresh hydrolysate and stored hydrolysate.


Asunto(s)
Fermentación , Lignina/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Saccharomyces cerevisiae/metabolismo , Temperatura
8.
PLoS One ; 6(11): e28088, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22132218

RESUMEN

This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections.


Asunto(s)
Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/microbiología , Biodiversidad , Cavidad Pulpar/microbiología , Cavidad Pulpar/patología , Enfermedad Aguda , Adolescente , Adulto , Bacterias/genética , Enfermedad Crónica , Análisis por Conglomerados , Humanos , Persona de Mediana Edad , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Adulto Joven
9.
Int J Syst Evol Microbiol ; 56(Pt 8): 1911-1916, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16902030

RESUMEN

A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as the electron acceptor and lactate as the electron donor. The major fatty acid detected in strain PV-4(T) was iso-C(15 : 0). Strain PV-4(T) had ubiquinones consisting mainly of Q-7 and Q-8, and possessed menaquinone MK-7. The DNA G+C content of the strain was 53.8 mol% and the genome size was about 4.5 Mbp. Phylogenetic analyses based on 16S rRNA gene sequences placed PV-4(T) within the genus Shewanella. PV-4(T) exhibited 16S rRNA gene sequence similarity levels of 99.6 and 97.5 %, respectively, with respect to the type strains of Shewanella aquimarina and Shewanella marisflavi. DNA from strain PV-4(T) showed low mean levels of relatedness to the DNAs of S. aquimarina (50.5 %) and S. marisflavi (8.5 %). On the basis of phylogenetic and phenotypic characteristics, the bacterium was classified in the genus Shewanella within a distinct novel species, for which the name Shewanella loihica sp. nov. is proposed. The type strain is PV-4(T) (=ATCC BAA-1088(T)=DSM 17748(T)).


Asunto(s)
Biología Marina , Shewanella/clasificación , Microbiología del Agua , Composición de Base , Medios de Cultivo , Cianoacrilatos/análisis , ADN Bacteriano/química , Ácidos Grasos/análisis , Genoma Bacteriano , Hierro , Datos de Secuencia Molecular , Océano Pacífico , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Homología de Secuencia de Ácido Nucleico , Shewanella/química , Shewanella/aislamiento & purificación , Shewanella/fisiología , Especificidad de la Especie , Temperatura , Ubiquinona/análisis , Vitamina K 2/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA