RESUMEN
AIM: This study aimed at investigating the efficacy of a 0.05% cetylpyridinium chloride-0.05% chlorhexidine (CPC-CHX) mouthwash in reducing viral load in the saliva as compared with sterile water. MATERIALS AND METHODS: Forty SARS-CoV-2 positive patients were asked to dispense 4 mL of saliva. Half the patients rinsed for 60 s with 15 mL CPC-CHX, and the remaining patients rinsed with sterile water (control). Four millilitres of saliva were collected after 15, 30 and 60 min after rinsing. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) specific for SARS-CoV-2 nucleocapsid protein were performed. For ELISA, the intact (representing the active virus) to total virus load (I/T) was calculated. RESULTS: SARS-CoV-2 copy numbers/mL from RT-qPCR tended to decrease in the control group, whereas in the CPC-CHX group, an increase was observed after T30. However, mixed linear model analysis revealed no statistical differences between groups (p = .124), time points (p = .616) and vaccinated or non-vaccinated patients (p = .953). Similarly, no impact of group (p = .880), time points (p = .306) and vaccination (p = .711) was observed for I/T ratio values. CONCLUSIONS: Within the limitation of this study, there was no evidence that the intervention reduced salivary SARS-CoV-2 viral load during the course of 60 min. Therefore, commonly used pre-procedural rinsing might not be clinically relevant.
Asunto(s)
Antivirales , COVID-19 , Antisépticos Bucales , Humanos , Antivirales/uso terapéutico , Cetilpiridinio/uso terapéutico , Clorhexidina/uso terapéutico , COVID-19/prevención & control , Método Doble Ciego , Antisépticos Bucales/uso terapéutico , Saliva , SARS-CoV-2 , AguaRESUMEN
Molecular testing of SARS-CoV-2 RNA is essential during the pandemic. Here, we compared the results of different respiratory specimens including anterior nasal swabs, pharyngeal swabs, saliva swabs, and gargle lavage samples to nasopharyngeal swabs on two automated SARS-CoV-2 test systems. Samples were collected and tested simultaneously from a total of 36 hospitalized symptomatic COVID-19 patients. Detection and quantification of SARS-CoV-2 was performed on cobas®6800 (Roche) and NeuMoDx™ (Qiagen) systems. Both assays showed reliable detection and quantification of SARS-CoV-2 RNA, with nasopharyngeal swabs showing the highest sensitivity. SARS-CoV-2 RNA concentrations in other respiratory specimens were lower (mean 2.5 log10 copies/ml) or even undetectable in up to 20%. These data clearly indicate that not all respiratory materials are equally suitable for the management of hospitalized patients, especially, in the late phase of COVID-19, when the viral phase subsides and inflammation becomes the predominant factor, making detection of even lower viral loads increasingly important.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , ARN Viral/genética , Pandemias , Prueba de COVID-19 , Saliva , Nasofaringe , Manejo de Especímenes/métodosRESUMEN
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.