RESUMEN
The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12 PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for six months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods.
Asunto(s)
Lansoprazol/química , Comprimidos Recubiertos/química , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Plastificantes/química , Polietilenglicoles/química , Polímeros/química , Povidona/química , Solubilidad/efectos de los fármacos , Tecnología FarmacéuticaRESUMEN
This study aimed to investigate the combined effect of magnesium oxide (MgO) as an alkalizer and polyethylene glycol (PEG) as a plasticizer and wetting agent in the presence of Kollidon® 12 PF and 17 PF polymer carriers on the release profile of mefenamic acid (MA), which was prepared via hot-melt extrusion technique. Various drug loads of MA and various ratios of the polymers, PEG 3350 and MgO were blended using a V-shell blender and extruded using a twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific, Carlsbad, CA) at different screw speeds and temperatures to prepare a solid dispersion system. Differential scanning calorimetry and X-ray diffraction data of the extruded material confirmed that the drug existed in the amorphous form, as evidenced by the absence of corresponding peaks. MgO and PEG altered the micro-environmental pH to be more alkaline (pH 9) and increased the hydrophilicity and dispersibility of the extrudates to enhance MA solubility and release, respectively. The in vitro release study demonstrated an immediate release for 2 h with more than 80% drug release within 45 min in matrices containing MgO and PEG in combination with polyvinylpyrrolidone when compared to the binary mixture, physical mixture and pure drug.
Asunto(s)
Composición de Medicamentos , Óxido de Magnesio , Ácido Mefenámico , Polietilenglicoles , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Portadores de Fármacos , Calor , SolubilidadRESUMEN
Commercially available domperidone orodispersible tablets (ODT) are intended for immediate release of the drug, but none of them have been formulated for sustained action. The aim of the present research work was to develop and evaluate orodispersible sustained release tablet (ODT-SR) of domperidone, which has the convenience of ODT and benefits of controlled release product combined in one. The technology comprised of developing sustained release microspheres (MS) of domperidone, followed by direct compression of MS along with suitable excipients to yield ODT-SR which rapidly disperses within 30 seconds and yet the dispersed MS maintain their integrity to have a sustained drug release. The particle size of the MS was optimized to be less than 200 µm to avoid the grittiness in the mouth. The DSC thermograms of MS showed the absence of drug-polymer interaction within the microparticles, while SEM confirmed their spherical shape and porous nature. Angle of repose, compressibility and Hausner's ratio of the blend for compression showed good flowability and high percent compressibility. The optimized ODT-SR showed disintegration time of 21 seconds and matrix controlled drug release for 9 h. In-vivo pharmacokinetic studies in Wistar rats showed that the ODT-SR had a prolonged MRT of 11.16 h as compared 3.86 h of conventional tablet. The developed technology is easily scalable and holds potential for commercial exploitation.
Asunto(s)
Preparaciones de Acción Retardada/química , Domperidona/química , Comprimidos/química , Administración Oral , Animales , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Dureza , Microesferas , Tamaño de la Partícula , Polímeros/química , Ratas , Ratas WistarRESUMEN
The aim of this study was to formulate face-cut, melt-extruded pellets, and to optimize hot melt process parameters to obtain maximized sphericity and hardness by utilizing Soluplus(®) as a polymeric carrier and carbamazepine (CBZ) as a model drug. Thermal gravimetric analysis (TGA) was used to detect thermal stability of CBZ. The Box-Behnken design for response surface methodology was developed using three factors, processing temperature ( °C), feeding rate (%), and screw speed (rpm), which resulted in 17 experimental runs. The influence of these factors on pellet sphericity and mechanical characteristics was assessed and evaluated for each experimental run. Pellets with optimal sphericity and mechanical properties were chosen for further characterization. This included differential scanning calorimetry, drug release, hardness friability index (HFI), flowability, bulk density, tapped density, Carr's index, and fourier transform infrared radiation (FTIR) spectroscopy. TGA data showed no drug degradation upon heating to 190 °C. Hot melt extrusion processing conditions were found to have a significant effect on the pellet shape and hardness profile. Pellets with maximum sphericity and hardness exhibited no crystalline peak after extrusion. The rate of drug release was affected mainly by pellet size, where smaller pellets released the drug faster. All optimized formulations were found to be of superior hardness and not friable. The flow properties of optimized pellets were excellent with high bulk and tapped density.
Asunto(s)
Carbamazepina/química , Liberación de Fármacos/efectos de los fármacos , Polietilenglicoles/química , Polímeros/química , Estabilidad de Medicamentos , Calor , Tamaño de la Partícula , Polivinilos/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.
Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Nanopartículas/química , Alquinos , Benzoxazinas/química , Rastreo Diferencial de Calorimetría/métodos , Ciclopropanos , Portadores de Fármacos/química , Estabilidad de Medicamentos , Liofilización/métodos , Calor , Tamaño de la Partícula , Polietilenglicoles/química , Polivinilos/química , Povidona/química , Solubilidad , Suspensiones/química , Agua/químicaRESUMEN
The main objective of this work was to explore the potential of coupling fused deposition modeling in three-dimensional (3D) printing with hot-melt extrusion (HME) technology to facilitate additive manufacturing, in order to fabricate tablets with enhanced extended release properties. Acetaminophen was used as the model drug and different grades and ratios of polymers were used to formulate tablets. Three-point bending and hardness tests were performed to determine the mechanical properties of the filaments and tablets. 3D-printed tablets, directly compressed mill-extruded tablets, and tablets prepared from a physical mixture were evaluated for drug release rates using a USP-II dissolution apparatus. The surface and cross-sectional morphology of the 3D-printed tablets were assessed by scanning electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the crystal states and thermal properties of materials, respectively. The 3D-printed tablets had smooth surfaces and tight structures; therefore, they showed better extended drug release rates than the directly compressed tablets did. Further, this study clearly demonstrated the feasibility of coupling HME with 3D printing technology, which allows for the formulation of drug delivery systems using different grades and ratios of pharmaceutical polymers. In addition, formulations can be made based on the personal needs of patients.
Asunto(s)
Preparaciones de Acción Retardada/química , Comprimidos/química , Acetaminofén/química , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Polímeros/química , Impresión Tridimensional , Tecnología Farmacéutica/métodosRESUMEN
OBJECTIVE: The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. METHODS: Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. KEY FINDINGS: Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. CONCLUSION: Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability.
Asunto(s)
Fenofibrato/química , Calor , Polímeros/química , Tecnología Farmacéutica/métodos , Agua/química , Absorción Fisicoquímica , Celulosa/análogos & derivados , Celulosa/química , Composición de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , HumectabilidadRESUMEN
BACKGROUND: Bitter tasting drugs represent a large portion of active pharmaceutical ingredients. Mini-tablets are specifically designed for patients with difficulty in swallowing particular in young children up to 10 years of age, geriatric patients and patients with esophagitis. OBJECTIVE: The present study was aimed to prepare, taste-masked mini-tablets, which are easily swallowed dosage forms, primarily to be used by pediatric and geriatric patients. METHODS: Ketoprofen (10%-50% w/w) and Eudragit® EPO were blended and extruded with a 5-mm strand die and cut into consistent mini-tablets by using an adapted downstream pelletizer. RESULTS: Differential scanning calorimetry and polarized light microscopy-hot stage microscopy studies confirmed that the binary mixtures were miscible under the employed extrusion temperatures. In-vitro release studies showed that drug release was less than 0.5% within the first 2 min in simulated salivary fluid (pH 6.8) and more than 90% in the first 20 min in gastric media (pH 1.0). The results of the electronic tongue analysis were well correlated with the drug release profile of the mini-tablets in the artificial saliva. Scanning electron microscopy revealed no cracks on the surface of the minitablets, confirming that the mini-tablets were compact solids. Chemical imaging confirmed the uniform distribution of ketoprofen inside the polymer matrices. CONCLUSION: Eudragit® EPO containing ketoprofen at various drug loads were successfully melt extruded into tastedmasked mini-tablets. The reduced drug release at salivary pH correlated well with Astree e-Tongue studies for taste masking efficiency.
Asunto(s)
Antiinflamatorios no Esteroideos/química , Excipientes/química , Cetoprofeno/química , Ácidos Polimetacrílicos/química , Tecnología Farmacéutica/métodos , Administración Oral , Antiinflamatorios no Esteroideos/administración & dosificación , Técnicas Biosensibles/instrumentación , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Preparaciones de Acción Retardada , Composición de Medicamentos , Nariz Electrónica , Jugo Gástrico/química , Humanos , Concentración de Iones de Hidrógeno , Cetoprofeno/administración & dosificación , Cinética , Microscopía Electrónica de Rastreo , Microscopía de Polarización , Difracción de Polvo , Saliva/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Comprimidos , Gusto , Tecnología Farmacéutica/instrumentación , TemperaturaRESUMEN
The objective of the present study was to develop pH-independent/dependent sustained release (SR) tablets of ondansetron HCl dihydrate (OND), a selective 5-HT3 receptor antagonist that is used for prevention of nausea and vomiting caused by chemotherapy, radiotherapy and postoperative treatment. The challenge with the OND API is its pH-dependent solubility and relatively short elimination half-life. Therefore, investigations were made to solve these problems in the current study. Formulations were prepared using stearic acid as a binding agent via a melt granulation process in a twin-screw extruder. The micro-environmental pH of the tablet was manipulated by the addition of fumaric acid to enhance the solubility and release of OND from the tablet. The in vitro release study demonstrated sustained release for 24h with 90% of drug release in formulations using stearic acid in combination with ethyl cellulose, whereas 100% drug release in 8h for stearic acid-hydroxypropylcellulose matrices. The formulation release kinetics was correlated to the Higuchi diffusion model and a non-Fickian drug release mechanism. The results of the present study demonstrated for the first time the pH dependent release from hydrophilic-lipid matrices as well as pH independent release from hydrophobic-lipid matrices for OND SR tablets manufactured by means of a continuous melt granulation technique utilizing a twin-screw extruder.