Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Periodontol ; 49(12): 1275-1288, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35817415

RESUMEN

AIM: The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects on gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS: Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days after ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS: Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signalling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared with that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS: High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Periodontitis , Ratones , Animales , Pérdida de Hueso Alveolar/etiología , Láseres de Semiconductores/uso terapéutico , ARN Ribosómico 16S , Microtomografía por Rayos X/efectos adversos , Periodontitis/complicaciones , Modelos Animales de Enfermedad
2.
J Biophotonics ; 17(2): e202300166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37975254

RESUMEN

We investigated the effects of low-level Er:YAG laser irradiation on proliferation and alternations in early gene expression of gingival fibroblasts. Mice primary gingival fibroblasts were irradiated with an Er:YAG laser (1.8, 3.9, and 5.8 J/cm2 ). Irradiation at 3.9 J/cm2 promoted cell proliferation without significant changes in lactate dehydrogenase or Hspa1a expression. Three hours after irradiation at 3.9 J/cm2 , the Fn1 expression level was significantly increased. RNA-seq identified 15 differentially expressed genes between irradiated and non-irradiated cells, some of which belonged to immediate early genes (IEGs). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated MAPK pathway enhancement, and gene set enrichment analysis showed enrichment in the TGF-ß signaling gene set. Enhanced proliferation via laser irradiation disappeared upon inhibition of Dusp4, Dusp5, and Tgfr1 expression. Low-level Er:YAG laser irradiation, especially at 3.9 J/cm2 without a major temperature elevation, enhanced fibroblast proliferation, via TGF-ß and the MAPK signaling pathway following IEG expression.


Asunto(s)
Láseres de Estado Sólido , Ratones , Animales , Maxilar , Proliferación Celular/efectos de la radiación , Factor de Crecimiento Transformador beta , Fibroblastos/efectos de la radiación , Expresión Génica
3.
Photobiomodul Photomed Laser Surg ; 41(10): 549-559, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37788456

RESUMEN

Objective: This study investigated the suppressive effects of blue light-emitting diode (LED) irradiation on bone resorption and changes in the oral microbiome of mice with ligature-induced periodontitis. Background: Wavelength of blue light has antimicrobial effects; however, whether blue LED irradiation alone inhibits the progression of periodontitis remains unclear. Methods: Nine-week-old male mice ligated ligature around the right maxillary second molar was divided into ligation alone (Li) and ligation with blue LED irradiation (LiBL) groups. The LiBL group underwent blue LED (wavelength, 455 nm) irradiation four times in a week at 150 mW/cm2 without a photosensitizer on the gingival tissue around the ligated tooth at a distance of 5 mm for 5 min. The total energy density per day was 45 J/cm2. Bone resorption was evaluated using micro-computed tomography at 8 days. Differences in the oral microbiome composition of the collected ligatures between the Li and LiBL groups were analyzed using next-generation sequencing based on the 16S rRNA gene from the ligatures. Results: Blue LED irradiation did not suppress bone resorption caused by ligature-induced periodontitis. However, in the LiBL group, the α-diversity, number of observed features, and Chao1 were significantly decreased. The relative abundances in phylum Myxococcota and Bacteroidota were underrepresented, and the genera Staphylococcus, Lactococcus, and Lactobacillus were significantly overrepresented by blue LED exposure. Metagenomic function prediction indicated an increase in the downregulated pathways related to microbial energy metabolism after irradiation. The co-occurrence network was altered to a simpler structure in the LiBL group, and the number of core genera decreased. Conclusions: Blue LED irradiation altered the composition and network of the oral microbiome of ligature-induced periodontitis in mice.


Asunto(s)
Pérdida de Hueso Alveolar , Microbiota , Periodontitis , Ratones , Masculino , Animales , Fármacos Fotosensibilizantes/farmacología , Microtomografía por Rayos X/efectos adversos , ARN Ribosómico 16S , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/metabolismo , Periodontitis/terapia , Periodontitis/complicaciones , Periodontitis/metabolismo
4.
Photodiagnosis Photodyn Ther ; 44: 103860, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884107

RESUMEN

BACKGROUND: In recent years, light has been used for bacterial control of periodontal diseases. This in vitro study evaluated the effects of light-emitting diode (LED) irradiation at different wavelengths on both Porphyromonas gingivalis and human gingival fibroblasts (HGF-1). METHODS: P. gingivalis suspension was irradiated with LEDs of 365, 405, 450, 470, 565, and 625 nm at 50, 100, 150, and 200 mW/cm2 for 3 min (radiant exposure: 9, 18, 27, 36 J/cm2, respectively). Treated samples were anaerobically cultured on agar plates, and the number of colony-forming units (CFUs) was determined. Reactive oxygen species (ROS) levels were measured after LED irradiation. The viability and damage of HGF-1 were measured through WST-8 and lactate dehydrogenase assays, respectively. Gene expression in P. gingivalis was evaluated through quantitative polymerase chain reaction. RESULTS: The greatest reduction in P. gingivalis CFUs was observed on irradiation at 365 nm with 150 mW/cm2 for 3 min (27 J/cm2), followed by 450 and 470 nm under the same conditions. While 365-nm irradiation significantly decreased the viability of HGF-1 cells, the cytotoxic effects of 450- and 470-nm irradiation were comparatively low and not significant. Further, 450-nm irradiation indicated increased ROS production and downregulated the genes related to gingipain and fimbriae. The 565- and 625-nm wavelength groups exhibited no antibacterial effects; rather, they significantly activated HGF-1 proliferation. CONCLUSIONS: The 450- and 470-nm blue LEDs showed high antibacterial activity with low cytotoxicity to host cells, suggesting promising bacterial control in periodontal therapy. Additionally, blue LEDs may attenuate the pathogenesis of P. gingivalis.


Asunto(s)
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porphyromonas gingivalis , Fibroblastos
5.
Antibiotics (Basel) ; 12(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136710

RESUMEN

Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA